دسته بندی | فنی و مهندسی |
فرمت فایل | doc |
حجم فایل | 9 کیلو بایت |
تعداد صفحات فایل | 10 |
مقاله بررسی اتیلن اکساید و موارد استفاده آن در 10 صفحه ورد قابل ویرایش
تاریخچه:
اتیلن اکساید (Ethylen Oxide) برای اولین بار در سال 1859 توسط میثمی دان فرانسوی چارلز آدولف ورتز (Charles Adolphe Wurtz) بدست آمد. این دانشمند اتیلن اکساید را از ترکیب 2- کلرواتانول با یک پایه به دست آورد.
در طول جنگ جهانی اول این ماده از لحاظ صنعتی اهمیت پیدا کرد و از آن برای تولید دو محصول اتیلن گلایکول (خنک کننده رادیاتور) و همچنین ساخت بمب شیمیایی گاز خردل استفاده شد.
در سال 1931 دیگر شیمی دان فرانسوی روشی برای تهیه اتیلن اکساید به طور مستقیم از اتیلن و اکسیژن با استفاده از کاتالیزور نقره پیدا نمود. از سال 1949 تقریباً تمام تولید اتیلن اکساید صنعتی، به همین روش انجام میگیرد.
به طور خلاصه، اتیلن اکساید از واکنش اتیلن و اکسیژن روی کاتالیزور و نقره در دمای 200 تا 300 درجة سانتیگراد به دست میآید. فشار این فرایند در محدوده 1 تا 2 مگاپاسکال و معادله شیمیایی آن به صورت زیر است:
بازدة این واکنش معمولاً بین 70 تا 80% است. روشهای گوناگونی برای تولید اتیلن اکساید وجود دارد که از لحاظ صنعتی هیچ یک ارزش روش ذکر شده را ندارند.
موارد استفاده:
گاز اتیلن اکساید، توانایی از بین بردن باکتری ها، قارچ ها و کپک ها را داراست و بنابراین برای استریل کردن موادی که نمی توان آنها را با استفاده از حرارت استریلیزه نمود، کاربرد فراوانی دارد. (موادی که در اثر حرارت تخریف میشوند) استریلیزه کردن با اتیلن اکساید برای حفاظت ادویه جات در سال 1938 توسط شیمیدان آمریکایی به کار گرفته شد و هنوز هم استفاده میشود. علاوه بر این، اتیلن اکساید برای استریلیزه کردن تجهیزات پزشکی مانند باند و لوازم جراحی و بخیه استفاده میشود.
بیشترین مصرف اتیلن اکساید به عنوان مادة واسطه در تولید دیگر محصولات شیمیایی است. عمده مصرف آن در تولید اتیلن گلایکول است. اتیلن گلایکول برای تولید پلی استرها (مانند پلی اتیلن ترفتالات) برای ساخت فیبرها، بطری ها و فیلمهای مخصوص و همچنین تولید ضدیخ برای رادیاتور اتومبیل ها به کار می رود. اتیلن اکساید هم علاوه بر مصارف ذکر شده، به عنوان یک ماده واسطه در تولید گسترة وسیعی از مواد شیمیایی مانند اتانول آمین ها، گلایکول اترها برای پوشش سطوح و اتوکسی لات ها برای فرمولاسیون سورفکتانت ها.
اتانول آمین ها را میتوان از واکنش اتیلن اکساید با آمونیاک به دست آورد. از اتیلن اکساید در تولید شوینده ها نیز استفاده میشود.
نکات بهداشتی:
استنشاق اتیلن اکساید سمی است. نشانه های این مسمومیت سردرد و سرگیجه بوده و پیشرفت بیماری با تشدید نشانه های آن و همچنین تشنج همراه است. در ضمن شوک ناگهانی و حالت اغما (کما) نیز به دنبال دارد. تماس اتیلن اکساید با پوست، خارش ایجاد کرده و بخار آن تنفس را مشکل میکند. استنشاق بخار آن منجر به پر شدن ریه از این سیال می گردد که عواقب بدی را به دنبال دارد. حیوانات آزمایشگاهی که در معرض تماس با این ماده قرار گرفتند، دچار درجات بالایی از سرطان کبد شدند، در حالیکه نشانه ای از سرطان در انسانهایی که برای مدت طولانی با آن سروکار داشتند و یا مقدار ناچیزی (دوز پائین) از اتیلن اکساید به آنها تزریق شد، دیده نشد. تماس طولانی با اتیلن اکساید ممکن است احتمال بیماری آب مروارید را در انسان تقویت کند. اتیلن اکساید تاثیرات وراثتی بی شماری روی حیوانات دارد و با جهش ژنتیکی نرخ بالایی از سقط جنین را به همراه دارد. تاثیرات وراثتی اتیلن اکساید روی انسانها به خوبی مطالعه نشده است، اما به وضوح معلوم شده است که تاثیرات مشابهی روی انسانها دارد.
تولید:
خواص فیزیکی اکسید اتیلن
اکسید اتیلن یک گاز بی رنگ است که در دمای پایین به گاز تبدیل میشود. اتیلن اکساید با هر نسبتی با آب، الکل، اتر و حلال های آلی دیگری به هر نستبی قابل امتزاج است. بخار اتیلن اکساید شعله ور و قابل انفجار میباشد. خواص فیزیکی اتیلن اکساید در جدول ضمیمه آمده است.
تولید اتیلن اکساید
فرایند تولید اتیلن اکساید هنگامی که به وسیله اکسید کردن مستقیم کلروهیدرین انجام شود بسیار اقتصادی میباشد. دانشمندان آلمانی این روش را در جنگ جهانی اول معرفی کردند. اتحادیه کاربیت در آمریکا اولین کمپانی میباشد که به طور عمده فرایند کلروهیدرین را مورد استفاده قرار داده است. اتحادیه کاربیت همچنین اولین اتحادیه میباشد که فرایند اکسیداسیون مستقیم را به صورت اقتصادی و تجاری درآورده است.
فرایند کلروهیدرین
فرایند کلروهیدرین هنگامی که از کلرین ارزان قیمت یا کسدیک سود در دسترس تهیه شود از نظر تجاری بسیار جذاب میباشد. فرایند کلروهیدرین در حدود 50 تا 60 درصد محصول تولید شده اتیلن اکساید میدهد در صورتی که اکسیداسیون مستقیم تنها 15 درصد اتیلن اکساید از محصول خروجی میدهد. یک بیان قابل شرح برای مرحلهی هیپوکلردار کردن اینکه ابتدا ما یون کلرید مثبت را به اتیلن اضافه کنیم تا به شکل یون کربونیوم یا کلرونیوم درآید سپس آنها را به وسیلهی هیدروکسیل یا یون کلراید شارژ کنیم.
2 کلرواتیلن اتر میتواند به وسیلهی واکنش اتیلن و کلرین در حضور کلرو هیدرین در دمای بالای 60 درجه اتفاق بیافتد. دو روش مهم صنعتی برای به دست آوردن اتیلن کلروهیدرین که برای به دست آوردن اتیلن اکساید یک واسطه است وجود دارد. در روش اول اتیلن با آهک هیدروژن دار شدهی له شده در دمای 20 درجهی سانتی گراد و تحت فشار 200 اتمسفر مخلوط میشود. این مخلوط به مخلوط کن پمپ میشود و در آنجا با بخار کلرین برخورد میکند و بصورت کلسیم اکسید کلراید ناپایدار درآید و در نهایت اسید هیپوکلروس و کلسیم کلراید می دهد، سپس اسید هیپوکلروس با اتیلن واکنش داده میشود.
دسته بندی | علوم پزشکی |
فرمت فایل | doc |
حجم فایل | 332 کیلو بایت |
تعداد صفحات فایل | 30 |
مقاله بررسی NRBCs در نوزادان تازه متولد شده در 30 صفحه ورد قابل ویرایش
بیان مسئله و ضرورت توجیه و انجام تحقیق
NRBCs گویچههای قرمز نارسی هستند که در خون محیطی نوزادان تازه متولد شدة سالم یافت میشوند. بلافاصله بعد از تولد کاهشی سریع در شمارش سلولهای بنیادی خونساز عمدتاً در نوزادان سالم دیده میشود. افزایش شمارش NRBC بندناف بعنوان یک شاخص هیپوکسی داخلی رحمی جنین بصورت حاد و مزمن و بعنوان یک پیشگوییکنندة نتایج بدنوزادی پیشنهاد شدهاست (نظیر درجة آپگار پایین، اسیدمی نوزادی، نیاز به پذیرش در واحد مراقبت نوزدای و تشنجهای نوزادی زودرس (1)).
هدف اصلی از مانیتورینگ ضربان جنین بهبود نتایج پرهناتال با تشخیص زودرس هیپوکسی جنین بوده است، برای این منظور مانیتورینگ قلب جنین بطور گستردهای در طی زایمان در دسترس قرار گرفت (2).
از طرفی مطالعات خوب کنترل شده مشخص کرده است که روش سمع متناوب با مانیتورینگ مداوم جنینی وقتی در فواصل زمانی خاص و با نسبت یکبهیک بین پرستار و بیمار انجام شود کارایی یکسان دارد (3).
بنظر میرسد هم افزایش NRBC بندناف و هم الگوهای غیرطبیعی ضربان قلب هیپوکسی جنینی را منعکس میکنند. مطالعات قبلی نشان داده که در هیپوکسی جنینی شمارش NRBC در طناب نافی افزایش مییابد، از طرفی بین الگوهای غیرطبیعی ضربان قلب و هیپوکسی جنینی رابطه وجوددارد (1).
ارتباط بین NRBC و الگوهای ضربان قلب از طریق سمع متناوب کمتر مورد توجه قرار گرفته است، بنابراین هدف از انجام این تحقیق بررسی ارتباط بین الگوهای غیرطبیعی ضربان قلب جنین در یکساعت آخر زایمان و شمارش NRBCs بندناف میباشد.
این الگوها شامل: تاکیکاردی، برادیکاردی، افت زودرس، افتدیررس، افت متغیر و افت طولانی میباشد. با توجه به اینکه مانیتورینگ جنین در این تحقیق به روش Doppler ultrasound Fetal Heart Detector و به طریق متناوب انجام میشود تعیین وجود یا حذف تغییرپذیری ضربان قلب و فاصلة آخرین تسریع ضربان قلب تا زایمان که در مطالعات قبلی بعنوان شاخص قابل اعتماد پیشگوییکنندة جنین غیرهیپوکسیک مطرح شدهاست (1) امکانپذیر نمیباشد.
بازنگری منابع و اطلاعات موجود
در مورد الگوهای ضربان قلب جنین در سیرلیبر و NRBC بندناف مطالعات متعددی صورت گرفته که به پارهای از آنها اشاره میشود:
· Jeffrey P. & Ahn در مقالهای با عنوان گریچههای قرمز هستهدار؛ شاخصی برای آسفیکسی جنین در 1995 در مجلة obstet Gynecol مطالعهای را برای تعیین ارتباط بین حضور NRBC و انسفالوپاتی هیپوکسیک – ایسکمیک و معایب نورولوژیک طولانی مدت نوزادی طراحی کردند. در این مطالعه NRBC بندناف نوزادان تک قل با مشکل نورولوژیک با نوزدان سالم مقایسه شدند. آنها نتیجه گرفتند که نوزادان دچار مشکل فوق سطح NRBC بالاتری داشتند. از طرفی مدت پاکشدن این گریچهها از خون در گروه اول بیشتر بود. بنابراین نتیجه گرفتند که NRBC میتواند به تشخیص حضور آسفیکسی جنینی کمک کند و وقتیکه آسفیکسی نزدیک به تولد اتفاق بیفند تعداد پایینتری NRBC در خون حضور دارند لذا این گریچههای هستهدار میتوانند در زمان صدمه نورولوژیک کمک کننده باشند (4).
· در مطالعة Kathleen & Kusseil در 1999 با عنوان NRBC بعنوان یک شاخص اسیدمی در نوزادان ترم ارتباط بین NRBC بندناف نوزادان ترم و دیگر شاخصهای احتمالی هیپوکسی جنینی بررسی شد. نتیجة مطالعه این بود که شمارش گریچههای قرمز هستهدار بطور قابل توجهی در نوزادان ترم متفاوت است. افزایش NRBC با اسیدمی، مکونیوم و پذیرش NICU ارتباط داشت (5).
· Serafina &Marina در 1999 در تحقیقی با عنوان گریچههای قرمز زمان تولد بعنوان شاخص آسیبمغزی پرهناتال، ارزش پروگنوستیک NRBC بدو تولد در مورد نتایج نوزادی و آسیب مغزی پرهناتال در نوزادان در معرض خطر آسیب نورولوژیک بررسی شد. ارتباط قابل توجهی بین شمارش گریچههای قرمز هستهدار و سن حاملگی و آپگار دقیقه اول، PH، base deficit، کسر O2 مصرفی، محتوی O2 خون و وزن تولد وجوددارد. نهایتاً آنها نتیجه گرفتند شمارش NRBC در زمان تولد نه فقط منعکسکنندة نتایج نوزادی ثانویه به هیپوکسی پرهناتال است بلکه اندکس قابل اعتمادی از آسیب مغزی پرهناتال نیز میباشد (6).
· Sean & Honor & Soina در مقالهای با عنوان ارتباط بین NRBC و تشنجهای زودرس نوزادی زمان آسیب نورولوژیک در نوزادان با تشنجهای زودرس را از طریق ارزیابی سطوح NRBC بررسی کردند. آنها متوجه شدند که در گروه مبتلا سطح NRBC در مقایسه با گروه کنترل بالاتر بود. آنها این فرضیه را مطرح کردند که آسیب نورولوژیک منجر به تشنجهای زودرس نوزادی اغلب قبل از دورة زایمان اتفاق میافتد (7).
· Dollbery S. در 2000 اثر Passive Smoking را روی NRBC در حاملگی بررسی کرد. شمارش NRBC در نوزادان ترم و AGA (مناسب برای سن حاملگی) در زنانیکه در معرض سیگار به صورت غیرفعال بودند با گروه کنترل مقایسه شد. او نتیجه گرفت سیگار کشیدن غیرفعال بعنوان یک متغیر غیروابسته ارتباط مهمی با شمارش NRBC نشان میدهد (8).
· Dollberg S. در سال 2000 سطح NRBC جنینهای سالم زنان مبتلا به دیابت بارداری را بررسی کرد. NRBC بندناف نوزادان LGA (سنگینتر نسبت به سن حاملگی) از زنان مبتلا به دیابت بارداری با نوزادان AGA زنانی با یا بدون دیابت بارداری مقایسه شدند در این مطالعه مشخص شد در گروه اول در مقایسه با دو گروه دیگر سطح NRBC بالاتر است (9).
· در سال 2001 در مطالعهای شمارش NRBC در سندرم آسپیریشن مکونیوم بررسی شد. در این مطالعه نوزادان با آسپیریشن مکونیوم که علائم تنفسی داشتند با جنینهای دچار آسپیریشن بدون علائم تنفسی و نوزادان بدون آسپیریشن مقایسه شدند سطح NRBC در گروه اول بیشتر بود (10).
· در 2003 در مطالعهای اثر زایمان فیزیولوژیک روی شمارش NRBC بررسی شد در این تحقیق NRBC در سزارین انتخابی بدون Trial of Labor با زایمان واژینال مقایسه شد. شمارش HCTو RBC بطور قابل توجهی در گروه زایمان واژینال بالاتر بود ولی شمارش مطلق RBCهای هستهدار بطور قابل توجهی در دو گروه مشابه بود. آنها نتیجهگرفتند که لیبر شمارش NRBC را تحت تأثیر قرار نمیدهد. این مطالعه از این یافته حمایت میکند که زایمان فیزیولوژیک سبب هیپوکسی جنینی شدید یا طولانی در حدی که سبب ایجاد شواهد هماتولوژیک افزایش اریتروپویزیس باشد نمیشود (11).
· در 2003 در تحقیقی که توسط Ferber و همکاران انجام شد ارتباط بین الگوهای ضربان قلب با گویچههای قرمز هستهدار در تولد بررسی و نتیجهگیری شد که ارتباطی قابل توجه بین نتایج بد پرهناتال و افزایش شمارش گویچههای قرمز هسته دار وجود دارد و با توجه به نتایج مثبت کاذب بالایی که الگوهای غیرطبیعی ضربان قلب در پیشگویی نتایج بد پرهناتال دارند، نتایج این تحقیق از مطالعات قبلی که نشان میدهد حضور تسریع ضربان قلب قبل از زایمان تنها متغیر غیروابستهای است که میتواند پیشگوییکنندة قابل اعتماد جنین غیر هیپوکسیک باشد حمایت میکند (1).
· در تحقیقی با عنوان ارزش پروگنوستیک تسریعها در 1982 نوار قلب جنینها را برای ارزیابی ارزش پروگنوستیک تسریع در مراحل اولیه لیبر و درست قبل از زایمان بررسی کردند. تسریعها به انواع اسپورادیک و پریودیک براساس عدم وجود ارتباط یا وجود ارتباط با انقباضات رحمی تقسیم شدند. نشان داده شد که تسریع اسپورادیک در عرض 30 دقیقه نامطلوب است ولی >3 تسریع سلامت جنین را نشان میدهد. ضربانهای غیرطبیعی همراه با >3 تسریع اسپورادیک پیشآگهی بهتری نسبت به ضربانهای غیرطبیعی همراه با تسریع اسپورادیک دارند.
جنین هایی که تغیرپذیری ضربان قلب کمتری دارند بطور معمول فاقد تسریع هستند و تغیرپذیری نرمال همیشه با تسریعهای اسپورادیک همراهی دارند. آنها نتیجه گرفتند که تسریعها نشانگر سلامت جنیناند در حالیکه فقدان تغییرپذیری ممکن است نشانة هیپوکسی شدید جنینی و اسیدوز باشد. این نتیجهگیری با نتایج نوزادی و شاخص PH پوست سرجنین تأیید میشود (12).
· در 1983 در تحقیقی با عنوان افت قلبهای متغیر آتیپیک ارزش و اهمیت پروگنوستیک افتهای متغیر ضربان قلب ارزیابی شد. در نوارهای قلب بررسی شده 19% از نوارهایی که افت متغیر در 30 دقیقه آخر زایمان داشتند نشانههای آتیپیک زیر را مکرراً نشان دادند:
1- فقدان تسریع
2- برگشت آهسته ضربان قلب پایه
3- افت طولانی قلب
4- فقدان تغییرپذیری در حین افت
5- تداوم ضربان قلب در یک سطح پایینتر.
طبیعی این امواج 5-3 سیکل در دقیقه است.
در حال حاضر شواهدی وجود ندارند که نشان دهند افتراق تغییرپذیری کوتاه مدت از طولانیمدت از نظر بالینی حائز اهمیت است. محدودة طبیعی تغییرپذیری ضربان به ضربان در حد 6-25دقیقه/ضربان پذیرفته شدهاست. افزایش تغییرپذیری در جریان تنفس جنین دیده میشود. در نوزادان سالم تغییرپذیری کوتاه مدت را میتوان به آرتیمی سینوسی تنفسی نسبت داد. حرکات جنین نیز تغییرپذیری را تحت تأثیر قرار میدهند. با افزایش سن حاملگی تغییرپذیری پایه افزایش مییابد. تا 30 هفتگی ویژگیهای پایه هم در حالت استراحت جنین و هم در حالت فعالیت جنین مشابهاند بعد از 30 هفته عدم فعالیت با کاهش تغییرپذیری پایه همراه میباشد و بلعکس تغییرپذیری در جریان فعالیت جنین افزایش پیدا میکند. جنسیت جنین تأثیری بر تغییرپذیری نداشتهاست. با افزایش تعداد ضربان قلب تغییرپذیری کاهش و با کاهش تعداد ضربان تغییرپذیری پایه بیشتر میشود. کاهش تغییرپذیری ممکن است نشانة شومی باشد و بر آشفتگی جدی وضعیت جنین دلالت داشته باشد. اسیدوز شدید مادر نیز میتواند سبب کاهش تغییرپذیری ضربان به ضربان جنین شود. درجات خفیف هیپوکسی جنین حداقل در آغاز اپیزود هیپوکسیک سبب افزایش تغییرپذیری میشود. کاهش تغییرپذیری ممکن است ناشی از اسیدوز متابولیک باشد که سبب تضعیف ساقه مغز جنین و یا خود قلب میشود بنابراین کاهش تغییرپذیری در مواردیکه بازتابی از آشفتگی وضعیت جنین است احتمالاً بجای هیپوکسی منعکسکنندة اسیدمی است. یکی از علل شایع کاهش تغییرپذیری ضربان به ضربان تجویز داروهای آنالژزیک در جریان لیبر است. تعداد زیادی از داروهای مضعف سیستم عصبی مرکزی میتوانند سبب کاهشگذاری تغییرپذیری ضربان به ضربان شوند از جمله نارکوتیکها – باربیتوراتها، داروهای ضد اضطراب و داروهای بیهوشی عمومی، سولفات منیزیم که جهت توکولیز و نیز برای درمان زنان هیپرتانسیو به کار میرود با کاهش تغییرپذیری ضربان به ضربان در ارتباط بودهاست.
عموماً اعتقاد بر این است که کاهش تغییرپذیری ضربان پایة قلب قابل اعتمادترین نشانة آشفتگی وضعیت جنین است. به اختصار تغییرپذیری ضربان به ضربان تحت تأثیر انواع مکانیسمهای پاتولوژیک و فیزیولوژیک قرار میگیرد. تغییرپذیری بسته به شرایط بالینی معانی کاملاً متفاوتی دارد. کاهش تغییرپذیری در غیاب افت ضربان غیرمتحمل است که ناشی از هیپوکسی جنین باشد.
آرتیمی قلب: ممکن است شامل تاکیکاردی پایه، برادیکاردی پایه یا شایعتر از همه Spiking ناگهانی خط پایه باشند. برادیکاردی متناوب پایه بطور شایع از بلوک مادرزادی قلب ناشی میشود. نقایص هدایتی و شایعتر از همه بلوک کامل دهلیزی – بطنی (AV)، معمولاً در همراهی با بیماریهای بافت همبند مادر یافت میشوند. آریتمی را فقط در صورتی میتوان به اثبات رساند که از الکترودهای پوست سر استفاده شدهباشد. اکثر آرتیمیهای فوق بطنی در طی لیبر اهمیت ناچیزی دارند مگر اینکه نارسایی قلبی همزمان (که با توجه به هیدروپس جنینی مشخص میشود) وجود داشته باشد. بسیاری از آرتیمیهای فوق بطنی در اوایل دورة نوزادی ناپدید میشوند اما برخی از آنها با نقایص ساختمانی قلب در ارتباط هستند. اکستراسیستولهای دهلیزی شایعترین نوع آرتیمی هستند در رتبه بعدی شیوع تاکیکاردی دهلیزی، بلوک دهلیزی – بطنی، برادیکاردی سینوسی و اکسیستولهای بطنی قرار دارند. گرچه در غیاب شواهد هیدروپس جنینی اکثر آرتیمیهای جنین عواقب ناچیزی در طی لیبر دارند بررسی سونوگرافیک اختلال جنینی و همچنین اکوکاردیوگرافی ممکن است کمککننده باشد. بطور کلی در غیاب هیدروپس جنینی ملاحظات مرتبط با حاملگی بهبود قابل توجهی در پیامد نوزاد ایجاد نمیکنند.
ضربان سینوزوئیدی (سینوسی)قلب: ممکن است در کمخونی شدید جنین مشاهده شود (چه در اثر ایزوایمونیزاسیون D، پارگی و ازاپرویا، خونریزی جنینی – مادری یا ترانسفوزیون قل به قل).
الگوهای سینوسی غیرقابل توجه بدنبال تجویز مپریدین، مورفین، آلفاپرودین و بوتورفانول گزارش شدهاند. الگوی سینوسی در موارد آمینوسنتز، دیسترس جنینی و انسداد بندناف گزارش شده است.
برای تعیین کمی میزان خطری که جنین را تهدید میکند الگوهای سینوسی ضربان قلب جنین را به انواع خفیف (با دامنة 15-5 ضربه در دقیقه)، متوسط (با دامنة 24-16 ضربه در دقیقه) و شدید (با دامنه 25 ضربه در دقیقه) تقسیمبندی میشوند. انواع خفیف با مصرف مپریدین و آنالژزی اپیدورال در ارتباط بودهاند. انواع متوسط با دورههای مک زدن پستان توسط نوزاد یا اپیزودهای گذرای هیپوکسی جنین در اثر فشردگی بندناف ارتباط داشتهاند.
پاتوفیزیولوژی الگوهای سینوسی نامشخص است. توافق عمومی براین است که نوسانهای سینوسی موجی شکل خط پایه در هنگام زایمان بر کمخونی شدید جنین دلالت دارند اما فقط در تعداد کمی از جنینهای مبتلا به ایزوایمونیزاسیون D این الگو دیده میشود.
دسته بندی | فنی و مهندسی |
فرمت فایل | doc |
حجم فایل | 38 کیلو بایت |
تعداد صفحات فایل | 38 |
مقاله بررسی اسید لاکتیک درس بیوفیزیک مهندسی پزشکی در 38 صفحه ورد قابل ویرایش
* معرفی
- چشم انداز تاریخی
- خصوصیات فیزیکی و شیمیائی
* تکنولوژی تهیه و تولید
- میکروارگانیسمها و مواد خام
· میکروارگانیسمها
· مواد خام
- فرآیند تخمیر
· محفظه بلند و پیوسته غلظت و جمعآوری در راکتورها
- فرآیند بهبود
· فلیتراسیون، رفتار کربنی و تبخیر
· کریستال کردن Caleium Lactate
· تقطیر مایع
· تقطیر استرهای شیر
· فرآیندهای دیگر بهبود
- تهیه به صورت ترکیبی
* اقتصاد
- سایز بازاری، تولید کنندگان، قیمتها
- استفاده و کارکردها
* خلاصه
* معرفی
چشم انداز تاریخی:
اسید لاکتیک (2 تا هیدورکسی پروپانیک اسید+ 2 تا هیدورکسی پروپیونیک اسید) به لحاظ ساختاری یک هیدورکسی اسید است که به وفور در طبیعت یافت میشود. اولین بار به صورت تجاری در سال 1894 توسط چارلز ای آوری[1] در لیتون[2] ماساچوست[3] امریکا تهیه و تولید شد. این تولید در نیل به هدف فروش Calcium Lactate به عنوان جانشینی برای خامهی تارتار در پودر نان پزی موفق نبود.
اولین کارکردهای موفق آن در صنعت چرم و منسوجات در سال 1894 آغاز شد (گریت[4] و 1930) تولید سالانه در آن دوره حدود 5000 کیلوگرم بود. در سال 1942 حدود نیمی از تولید سالانهی آمریکا که حدود 106* 7/2 کیلوگرم بود به مصرف صنعت چرم میرسید و 20% آن به مصرف صنایع غذائی (فیلاچیون[5] و 1952).
تولید آمریکا طی جنگ جهانی دوم به اوج خود یعنی 106* 1/4 کیلوگرم در سال رسید اما پس از آن به 106* 3/2 کیلوگرم تنزل کرد. یک بازار سالانهی 106* 90 کیلوگرمی (یندل[6] و آریز[7]) در صنعت پلاستیک در اواخر دهه پنجم و اوایل دههی ششم قرن نوزدهم پیشبینی شد که این پیشبینی منجر به یک تحقیق و بررسی وسیع اما ناموفق در جهت کاهش هزینه و افزایش خلوص تولید شد.
یک دهه بعد، نیاز به یک حرارت ثابت برای اسید لاکتیک در جهت تولید Stearoy 1-2- lactylates در صنعت شیرینیپزی دری به سوی تولید ترکیبی اسید لاکتیک گشود. (آنون[8]، 1963).
تولید جهانی سال 1982 به سرعت به 106* 28-24 کیلوگرم رسید. بیش از 50% اسید لاکتیک تولیدی در صنایع غذائی به عنوان ماده جلوگیری از فساد غذائی استفاده میشد، تولید Stearoyl –2- lacty lates نیز 20% تولید اصلی را در برمیگرفت و بقیهی تولید سالانه در صنعت داروسازی و یا سایر کاربردهای منتوع صنعتی به مصرف میرسید. تخمیر نیز به سرعت برای تولید نیمی از کل تولید جهانی استفاده شد.
خصوصیات فیزیکی و شیمیائی
نخستین بار اسید لاکتیک توسط اسکیل[9] در سال 1780 از شیر ترش گرفته شد (لاک وود[10]، 1965). خصوصیات فیزیکی و شیمیائی اسید لاکتیک به طور وسیعی توسط هالتون[11] مورد بررسی قرار گرفته است. اسیدلاکتیک به دوفرم فعال قابل نمایش وجود دارد. لاک وود بیان کرد اگر چه شکل (+)L دکسوترو روتاتوری[12] به نظر میرسد، اما ممکن است واقعاً به صورت لوروتاتوری[13] باشد یعنی همانگونه که در نمکها و استرهاست واژگونی آشکار در چرخش قابل نمایش ممکن است به واسطه شکلگیری پل اکسیداتلین بین اتمهای کربن 1و2 به وسیلهی جابهجائی تاتومریک گروه هیدورکسیل روی اتم کربن 2 به گروه رادیکال کربوکسیل کربن 1 باشد. نمکها و استرهای +L اسیدلاکتیک نمیتوانند این حلقهی اپوکسید را تشکیل دهند ولذا لوروتاتوری هستند ایزومر (+)L (سارکولاکتیک اسید، پارالاکتیک اسید) در انسانها وجود دارد اما هر دو ایزومر (+)L و (-)D در سیستمهای بیولوژیکی یافت میشود. برخی از خصوصیات عمومی اسیدلاکتیک در جدول 1 آمده است:
مراحل تخمیر
تخمیر ناپیوسته، شیوهای است که در صنعت مورد استفاده قرار میگیرد. مخمرها از چوب یا 316 فولاد رنگ نشده ساخته شده است و با انتقال مارپیچی گرما برای کنترل حرارت مجهز میشوند. آمیختگی جزئی ازطریق همزدن به منظور نگه داشتن مخلوط ایجاد می شود. مخمرها به طور کلی بخار میشود، یا آب جوش گرم شده (Inskeepila 52) و یا از نظر شیمیائی استریل میشوند (قبل از تکمیل میانگین پاستوریز شدگی) (Buertonila37) غالباً مخمرها فضاهای کمی را پوشش میدهند. ناخالصی و آلودگی مشکل بزرگی نمیباشد: جدیترین مسئله ناخالصی به دلیل رشد باکتری بوبتریک اسید در پایان تخمیر میباشد. تجمع محصول نهایی کمتر از 15-12 درصد بستگی به شرایط دیگر تخمیر به منظور جلوگیری از لاکتیک شدن کلسیم دارد. (1944، Peckham). شرایط تخمیر برای هر تولید کننده صنعتی متفاوت میباشد اما به طور کلی در گستره 60-45 درجه سانتیگراد با PM 5/6-5/5 برای L.delbreuckii (1944 Peckham، 1952، دیگران و Inskeep)؛ 34 درجه سانتیگراد و Ply 7-6 برای L.bulgaricus (1937، Burton)؛ و 50-30 درجه سانتیگراد و PH پایین تر از 6 برای Rhizopus میباشد. (1964 Snell 8 Lowerg)
معمولاً اندازه inoculum 10-5 درصد از حجم مایع در مخمر میباشد.
Inoculum میتواند در دانه در نظر گرفته شده برای کامل تخمیر مورد استفاده قرار بگیرد ترکیب اسید از طریق کربونات کلسیم و یا هیدروکسیدکلسیم تغذیه میشود. عامل تغذیه میتواند در گسترش ماده آبکی در آغاز تخمیر اضافه شود ویا در طول تخمیر بر اساس PH یا اندازهگیری تیترات اسید اضافه شود. زمان تخمیر 2-1 روز برای 5 درصد منبع شکر میباشد مانند آب پنیر و یا 2 تا 6 روز برای 15 درصد شکر مانند گلوکز یا ساکاروز و بازده راکتور در گستره 1-n –3-kg m 3-1 میباشد. تحت شرایط آزمایشگاهی مناسب مرحله تخمیر 1 تا 2 روز طول میکشد. محصول اسیدلاکتیک بعد از مرحله تخمیر WT95-90% بر اساس شکر اولیه و یا تجمع نیشکر میباشد. به طور کلی تجمع شکر باقی مانده کمتر از 1/0 درصد میباشد. بازده توده سلولی میتواند به بزرگی WT30% باشد اما به طور کلی بر اساس تجمع اولیه شکر WT15% میباشد. محصول وبازده توده سلولی بستگی به اندازه تغذیه نیتروژنی استفاده شده دارد. اندازه تخمیر بستگی به حرارت اولیه PH، تجمع تغذیه نیتروژنی و تجمع اسیدلاکتیک دارد. کنترل PH تخمیر ناپیوسته را ابتدا به سرعت دنبال میشود. دو برابر شدن زمان توده سلولی کوچک در حدود یک ساعت میباشد اما این میزان تحت شرایط کارهای صنعتی هنگامیکه اندازه نیتروژن مناسب نمیباشد، ایجاد نمیشود. بایستی توجه شود که آمیختگی کرنشها ممکن است روابط سیمبوتیک داشته باشد که میزان تخمیر را سریعتر میکند.
(1966، Childs 8 welsby، 1983، viniegra – Gonzalez 8 Geomez) هنگامیکه مراحل تخمیر دنبال میشود میزان اولیه کم میشود، که دلیل کاهش رشد مواد غیر ضروری و تجمع اسیدلاکتیک میباشد.(1975) Tsao 8 Hanson تاثیر رشد مواد محرکها الگوبرداری کردند. اسید لاکتیک خنثی شده الکتریکی و غیرقابل تجزیه نسبت به لاکتات به نظر میرسد گونهای از تخمیر باشد. (1983، Viniegra – Gonzales 8 Gomez ، 1984، Blanch و دیگران). مدلهای ریاضی برای تخمیر اسیدلاکتیک بوسیله Piret 8 Leudeking درسال (a)1959، (1972) Toao 8 Hanson (1975) Tsao 8 Hanso، (1975) Keller 8 Gerhardt، (1977) Aborhey 8 Willian son، (1980) Samuel ارائه شده است. این مدلها بر اساس بررسی ها و مطالعات آزمایشگاهی در میزان بزرگی از تغذیههای نیتروژنی مورد استفاده قرار میگیرد.
تخمیر تجاری پاستوریزه شدن شیر بوسیله (1937)Burton و (1936) Olive مورد بررسی قرار گرفته است و کشت خالص L. bulgaricus در زمان فعلی مورد استفاده قرار گرفته است. تخمیر دی اکستروس از ذرت از طریق (1952) Insleep و (1944)Peckham فهرست بندی شده است. تخمیر گلوکز از طریق بخشی بوسیله Snell Rhizopus و بخشی دیگر بوسیله (1964)Lowery بررسی شده است Cordon و دیگران در سال 1950 تخمیر هیدورلسیات سیبزمینی را مورد بررسی قرار داد و (1948) Leonard تخمیر سولفات مایع را بررسی کرد. تخمیر سورگام خام استخراج شده L. Plantauraml بوسیله Samuel و دیگران در سال 1980 مورد مطالعه و بررسی قرار گرفت. اطلاعات موجود مطالعات آزمایشگاهی از تخمیر L. delbreuckii بر روی گلوکز از طریق Kempe و دیگران در سال (1950)، (1950) Finn، (1959)Leudeking 8 Piret ،(1973) Hanson و (1975) Tsao 8 Hanson ارائه داده شده است.
تصفیه سازی، عملکرد و تبخیر
یکی از شیوههایی که از نظر اقتصادی مناسب بوده و اسیدلاکتیک تولید میکند به تخمیر شکرهای خالص با حداقل اندازه تغذیه نیتروژن تاکید دارد. از این رو بوسیله استفاده از ذخائر غذایی خالص، مراحل بازیافت آسان میشود. جزئیات بیشتر این مراحل بوسیله (1952)Insleep و دیگران ارائه شده است و مراحل مشابه که بوسیله شرکت Clintin استفاده شده است از طریق (1944) Peckham بررسی شده است. ممکن است مراحل برای تولید فنی یا درجه غذایی اسید استفاده شود. بعد از تخمیر فعالیتهای کربنی سبزی برای سفید کردن لاکتات کلسیم برای تولید درجه غذایی اسید به کار برده میشود. هیچگونه عملکرد کربن برای درجه فنی استفاده نمیشود. سپس لاکتات کلسیم به 37% تجمع در Cْ70 و atm57/0 تبخیر میشود. سپس تجمع لاکتات با 36% سولفوریک اسید، اسیدی شده و سولفات کلسیم از طریق فیتلر برداشته شده و به مایع تخمیر فرستاده میشود. فیلتر اسید با (اسید تصفیه شده) با فعالیت کربن در بخش اول برخورد کرده و کربن 3 و4 عمل میکنند. کربن از این مرحله رد میشود. اسیدلاکتیک از 8 به 52% یا 82% در تبخیرکننده استیل بدون رنگ 316 تبخیر میشود. درجه فنی اسید به 50% یا 80% رقیق شده و در صورت لزوم با سولفات سدیم برای برداشتن فلزات سنگین عمل میکنند. درجه خوراکی اسید رقیق شده از 50 یا 80 درصد میباشد. برای بار سوم با کربن فعال سفید شده و با سودیوم سولفات برای برداشتن فلزات سنگین برخورد میکند. سپس برای بار چهارم قبل از بستهبندی شدن با کربن سفید شوند. ساختارهای دیگر نیز برای برخوردهای کربن مورد استفاده قرار میگیرد. فلزات سنگین میتواند از طریق مبادله یونی برداشته میشود که ممکن است برای برداشتن اسید آمینه موجود استفاده شود. (1959، Machell)
فلزات سنگین نیز میتوانند از طریق استوکیتتری کلسیم یا سدیم اضافی برداشته شوند. در حال حاضر استفاده از این مراحل کاملاً شناخته شده نمیباشد.
تبلور لاکتات کلسیم
ممکن است لاکتات اسید از تخمیر مواد خام تر مانند آب پنیر یا مولاسس شناخته شده باشد. جزئیات و فلدشیت مرحله از طریق شرکت تولیدی Sheffield استفاده شده بوسیله Burton (1937) ارائه شده و از طریق Prescotl و Dunn (1959) جمع بندی شده است. درجات مختلفی از لاکتات کلسیم و اسیدلاکتیک از آب پنیر تولید شده است. مایع تصفیه شده از تخمیر با کربن اول تحت آلکایین و شرایط اسیدی ضعیف برخورد میکند. مایع لاکتات کلسیم خام تحت تراکمی در حدود 3- kg m 12/1 تبخیر میشوند. درجه فنی اسید از این مایع بعد از تبخیر، اسید سازی و تصفیه سازی سولفات کلسیم ایجاد میشود. برای ایجاد درجه بالاتری از تولید، مایع سرد، متبلور و شسته میشود.
مایع اولیه و آب شسته شده نیز سردؤ متبلور شسته میشود. بلورها بعدداً تجزیه شده و در مراحل اولیه برای ایجاد درجات خالصتر مجدداً متبلور میشوند. اسیدها از خالصیتهای مختلف از درجات مختلف بلورها بوسیله تجزیه آب، اسیدسازی، رسوبگیری سولفات کلسیم، تصفیهسازی، تبخیر، برخوردکربن و رسوبگیری فلزات سنگین ایجاد میشود. در حال حاضر Sheffield تنها لاکتات کلسیم ایجاد میکند. متبلورسازی در بخش جداگانه انجام میشود و فولاد رنگنشده تاثیر دو برابری بر تبخیر دارد. ناخالصی از طریق تصفیه سازی و برخورد کربنها برداشته میشود. هیدراسیون محصول نهایی در مرحله خشک کردن صورت میگیرد. C.U. Chemie Combinatie Amsterdam نیز از مراحل بازیافت بر اساس بلورسازی لاکتات کلسیم برای پیبردن به برخی از محصولات آن استفاده کرد. (1944) Peckham مرحلهای را برای تصفیهسازی اسیدلاکتیک از طریق رسوب زدایی لاکتات کلسیم توصیف و بررسی کرد. مایه تخمیر تصفیه و به 25% اسید لاکتیک تبخیر میشود. از این رو لاکتات کلسیم متبلور شده و از مایع اولیه جدا می شود.
عرق گیری استرهای لاکتات
اسید لاکتیک با کیفیت بالا که عاری از شکرهای باقی مانده و ناخالصی های دیگر می باشد از طریق استری سازی اسید لاکتیک با الکل مولکولی پایین، عرق گیری استرلاکتیک، تجزیه آبی استر عرق گیری شده برای رهایی از الکل و اسید لاکتیک و عرق گیری الکل از اسید لاکتیک بازیافت شده می باشد. چیلدز و ولسبی اظهار می دارند که استرسازی شخصی و ناخالصی های تخمیر مایع، مشکلات بارزی را به وجود می آورد. دیتزو همکارانش اسید لاکتیک را استری کردند تا نوعی لاکتات آلکیل به وجود آورند و سپس استر را داخل حلالی چون دیکلورتان 2 و 1 استخراج نمودند. فیلاکیون و کوستلو جزئیاتی را برای فرایند ساختن اسید لاکتیک از لاکتات آمونیوم را ارائه می دهند که اگر آمونیوم یا یکی از نمک های آن، در طول تخمیر برای خنثی سازی اسید بکار رود محصولی تخمیری به شمار می آید. اسکوپامیر به بحث درباره عملکرد یک واحد تجاری که مکرراً توسط تعریق لاکتات متیل برای تصفیه اسید لاکتیک به کار می رود می پردازد. محصول به دست آمده عاری از خاکستر بود و میزان ناخالصی های دیگر در آن اندک بود. فرسایندگی ستون های استیل محصول را با آهن درمی آمیخت. وسیله سرامیک غیرمناسب بود چرا که تغییرات دمایی غالب و اسید قوی در آن موجود بود.
سایر فرایندهای بهبود
اسید لاکتیک توسط رونشینی اسید لاکتیک بر روی رونشین های جامد یا رونشین سازی لاکتات بر روی رزین های مبادله یون بهبود می یابد. لوئیس آیوسواس آ (اسپانیا) برای بهبود اسید لاکتیک از لحاظ تجاری، از مبادله یون یا فرایند استخراج مایع به مایع استفاده میکند. اما هیچ یک از جزئیات فرایند، شناخته شده نمی باشند. سوگیموتو و دستیارانش، فرایندی را برای تولید اسید لاکتیک بوجود آوردند که در آن رزین های بسیار اسید و یون قلیایی برای جداسازی اسید از آب مورد استفاده قرار می گرفت.
هفت راه دیگر برای خالص کردن اسید لاکتیک وجود دارد اما هنوز استفاده تجاری نشده است. Claborn , Smith در (1939) و Molini (1959) در مورد چند مورد از این روشها بحث کرده اند. لاکتیک مگنزیم یا مس ممکن است دوباره متبلور می شود و در آب حل نمی شود. مس ممکن است ترکیب شود با سولفید هیدروژن و منیزیم با سولفید منیزیم ترکیب می شود. درجه خوراکی می تواند تولید شود به وسیله اکسید شدن جداگانه مایعی که شامل اسید آزاد و یا نمک لاکتیک است. برنامه های متفاوت تقطیر که باعث ایجاد بخار، هوای داغ و گازهای بی کنش و خلاء می شود با موفقیت به دست می آید. Dxy , Krumphanzel (1964) از اکستره دیالیز برای از بین بردن مداوم اسید لاکتیک از طریق تخمیر استفاده کردند. دیگر انواع در حال حرکت در تخمیر مشکلات دیگر هستند. 4. 2. 38 صنعت ترکیبی. صنعت ترکیب اسید لاکتیک در حالت تجاری حدود 1963 در ژاپن شروع شد و هر زمان در ایالات متحده امروزه این دو کشور به ندرت 50 درصد از اسید لاکتیک جهان را تولید می کنند. تولید ترکیبی اسید لاکتیک براساس هیدرولایز لاکتیک با استفاده از اسید قوی نظیر HCL انجام می گیرد.
دسته بندی | برق |
فرمت فایل | doc |
حجم فایل | 79 کیلو بایت |
تعداد صفحات فایل | 31 |
مقاله بررسی اتوماسیون صنعتی (PLC) در 31 صفحه ورد قابل ویرایش
فهرست
عنوان صحفه
مقدمه..................................................................................................................... 1
کنترل کننده های قابل برنامهریزی (PLC) ها........................................................ 2
برنامه نویسی (PLC) ها........................................................................................ 7
PLCهای زیمنس.................................................................................................... 11
PLC لوگو.............................................................................................................. 14
مقدمه:
هر سیستم کنترلی را به سه بخش اصلی میتوان تقسیم کرد: ورودی، بخش پردازشگر و خروجی. سیگنالهای ورودی توسط مبدلها که کمیتهای فیزیکی را به سیگنالهای الکترونیکی تبدیل میکنند فراهم میشوند. یک سیستم کنترل باید بتواند بر طریقه عملکردی یک فرآیند دخالت و تسلط داشته باشد. این کار با استفاده المانهای خروجی، از قبیل پمپها، موتورها، پیستونها، رلهها و … انجام میشود.
یک طرح کنترلی به دو روش قابل اجرا است:
با استفاده از سیستمهای کنترل غیرقابل تغییر توسط اپراتور و نیز با استفاده از کنترل کنندههای قابل برنامهریزی.
رله یکی از قطعات مهم در بیشتر سیستمهای کنترل مدرن است. این قطعه یک سوئیچ الکتریکی با ظرفیت جریانی بالاست. یک سیستم رلهای ممکن است شامل چند صدیا حتی چند هزار کنتاکت باشد.
PLCها به عنوان جانشینی برای سیستمهای منطقی رلهای و تایمری غیرقابل تغییر توسط اپراتور طراحی شدند تا به جای تابلوهای کنترل متداول قدیمی استفاده شوند. این کار به وسیله برنامهریزی آنها و اجرای دستورالعملهای منطقی ساده که اغلب به شکل دیاگرام نردبانی است، صورت میگیرد. PLCها دارای یک سری توابع درونی از قبیل: تایمرها و شمارندهها و شیفت رجیسترها میباشند که امکان کنترل مناسب را، حتی با استفاده از کوچکترین PLC نیز، فراهم میآورند.
یک PLC با خواندن سیگنالهای ورودی، کار خود را شروع کرده و سپس دستورالعملهای منطقی (که قبلاَ برنامهریزی شده و در حافظه جای گرفته است) را بر روی این سیگنالهای ورودی اعمال میکند و در پایان، سیگنالهای خروجی مطلوب را برای راهاندازی تجهیزات و ماشینآلات تولید مینماید. تجهیزات استانداردی درون PLCها تعبیه شدهاند که به آنها اجازه میدهد مستقیماَ و بدون نیاز به واسطههای مداری یا رلهها، به المان خروجی یا محرک (actuator) و مبدلهای ورودی (مانند پمپها و سوپاپها) متصل شوند.
با استفاده از PLCها، اصلاح و تغییر یک سیستم کنترل بدون نیاز به تغییر محل اتصالات سیمها ممکن شده است.
برخی ویژگیهای خاص، آنها را ابزاری مناسب جهت انجام عملیات کنترل صنعتی نموده است. برخی از این ویژگیها عبارتند از:
l تجهیزات حفاظت کنندهها PLCها از نویز و شرایط نامساعد محیطی
l ساختار PLCها، که به سادگی امکان تعویض یا افزودن واحد یا واحدهایی را به PLC میدهد. (مثلاَ واحد ورودی/ خروجی)
l اتصالات استاندارد ورودی/ خروجی و نیز سطوح سیگنال استاندارد
l زبان برنامهنویسی قابل درک و آسان (مانند دیاگرام نردبانی یا نمودار وظایف)
محدوده PLCهای در دسترس، از PLCهای جامع و کامل کوچک با 20 ورودی/ خروجی و 500 مرحله یا گام برنامهنویسی تا سیستمهای مدولار با مدولهای قابل افزایش را دربرگرفته است مدولها برای انجام وظایفی نظیر:
l ورودی/ خروجی آنالوگ
l کنترل PID (تناسبی، انتگرالگیر و مشتقگیر)
l ارتباطات
l نمایش گرافیکی
l ورودی/ خروجی اضافی
l حافظههای اضافی و … استفاده میشوند.
کنترل کننده های قابل برنامهریزی (PLC)ها:
PLCها، کامپیوترهایی ساخته شده به منظور خاص هستند که شامل سه قسمت اجرایی اصلی میباشند: پردازشگر، ورودی/ خروجی و حافظه. سیگنالها از طریق ورودی به PLC فرستاده شده و آنگاه در حافظه، ذخیره میشوند. سپس سیگنالهای خروجی به منظور راهاندازی تجهیزات مورد نظر، تولید میشوند.
در PLCهای کوچکتر، این عملیات توسط کارتهای ویژهای انجام میگیرند که به صورت واحدهای بسیار فشردهای ساخته شدهاند، در حالی که ساختار PLCهای بزرگتر به صورت مدولار با مدولهایی که بر روی شیارهای تعبیه شده بر روی دستگاه نصب میشود، بنا گردیده است. این امر امکان توسعه سیستم را- در صورت ضرورت- به سادگی فراهم میآورد. در هر دوی این موارد بوردهای مداری ویژهای، به سادگی تعویض یا برداشته میشود و امکانات تعمیر سیستم نیز به سادگی فراهم میآید.
CPU بر تمام عملیاتی که در PLC رخ میدهد، کنترل و نظارت دارد و دستورالعملهای برنامهریزی شده و ذخیره شده را اجرا میکند.
تمام PLCهای مدرن برای ذخیره برنامه از حافظههای نیمه هادی مانند EPROM, RAM یا EEPROM استفاده میکنند.
عملاَ از RAM برای تکمیل برنامه مقدماتی و تست آن استفاده میشود، زیرا که امکان تغییر و اصلاح راحت برنامه را فراهم میآورد.
پس از این که یک برنامه تکمیل شد و مورد آزمایش قرار گرفت میتوان آن را در PROM یا EPROM، که اغلب ارزانتر از قطعات RAM میباشند، بار (Load) کرد. برنامهریزی PROM معمولاَ توسط یک برنامهریز مخصوص صورت میگیرد.
PLCهای کوچک معمولاَ تا حدی به دلیل ابعاد فیزیکی دستگاه دارای حجم حافظه محدود و ثابتی میباشند. حجم این حافظهها بسته به تولیدکننده آنها بین 300 تا 1000 دستورالعمل متفاوت است. این حجم حافظه ممکن است کمتر از آنی به نظر آید که مناسب جهت امور کنترلی باشد، اما تقریباَ حدود 90 درصد عملیات مورد نیاز کنترلهای دودویی با کمتر از 1000 دستورالعمل قابل اجرا میباشند. بنابراین فضای حافظه لازم برای بیشتر کاربردها فراهم خواهد آمد.
PLCهای بزرگتر از مدولهای حافظهای استفاده میکنند که بین K1 تا K64 فضای حافظه را فراهم میآورند. این مدولها امکان گسترش سیستم را با افزودن کارتهای حافظه RAM یا PROM به PLC فرام میآورند.
معیار اولیه مشخص کننده اندازه PLCها، در قالب حجم حافظه برنامه و حداکثر تعداد ورودی و خروجیهایی که سیستم قادر به پشتیبانی از آنهاست ارائه میشود. اما به منظور ارزیابی و محک مناسب هر PLC، باید خصوصیات دیگری از آن، از قبیل نوع پردازشگر، زمان اجرای یک سیکل برنامه، تسهیلات زبان برنامهنویسی، توابع (از قبیل شمارنده، تایمر و …) قابلیت توسعه و … را نیز در نظر بگیریم.
معمولاَ، PLCهای کوچک و «مینی PLCها» به صورت واحدهای قدرتمند، کارآ و فشردهای طراحی میشوند که قابل جاسازی بر روی، یا کنار تجهیزات تحت کنترل باشند. آنها عمدتاَ به عنوان جایگزین سیستمهای رلهای غیرقابل تغییر توسط اپراتور، تایمر، شمارنده و غیره مورد استفاده قرار میگیرند تا بخشهای مجزا و منفرد کارخانجات یا ماشینآلات را کنترل کنند، اما میتوان آنها برای هماهنگ کردن عملکرد چند ماشین در تلفیق با یکدیگر سود جست.
PLCهای کوچک قادر به توسعه تعداد کانالهای ورودی و خروجی با استفاده از یک یا دو مدول ورودی/ خروجی میباشند.
PLCهای بزرگ برای استفاده در کارخانجات عظیم یا ماشینهای بزرگی که به کنترل پیوسته نیازمندند، طراحی شدهاند.
همچنین آنها به عنوان کنترل کننده ناظر آن نظارت (monitor) و کنترل کردن چندین PLC دیگر یا سایر ماشینهای هوشمند به کار میروند.
در PLCهای بزرگ از:
l پردازشگر 16 بیتی به عنوان پردازشگر اصلی جهت محاسبات دیجیتالی و همچنین به کارگیری متن.
l پردازشگرهای تکبیتی به عنوان پردازشگر همکار برای محاسبه سریع، ذخیرهسازی و …
l پردازشگرهای جانبی، برای انجام وظایف اضافی که تابع زمان میباشند مانند:
کنترل حلقه بسته PID ، کنترل موقعیت، محاسبات عددی با ممیز شناور، تشخیص عیب و رصد ، ارتباطات بین ماشینهای هوشمند برای ورودی/ خروجی توزیع شده، دیاگرامهای تقلیدی از وضعیت فرآیند یا دیاگرامهای فرآیندنما ، نصبگاههای ورودی/ خروجی با فاصله دور استفاده میشود.
STARTUP FLAG:
در اولین سیکل از برنامه مصرف کننده تنظیم میشود و متوالیاَ بعنوان STARTUP FLAG در برنامه مورد استفاده قرار میگیرند. همچنین M8 میتواند مانند دیگر MARDERها در برنامه مورد استفاده قرار گیرد.
FIXED LEVE:
با HI=1, LO=0 مشخص میشوند.
OPEN CONINECTOR (X):
در مواردی که نیاز به سیمبندی نمیباشد از این پایه استفاده میشود.
از مزایای این برنامه این است که میتوان انواع مدارات را طراحی و در کامپیوتر شخصی تست کرد حتی بدون داشتن LOGO.
برای برنامهنویسی میتوان از دو زبان برنامهنویسی که در این نرمافزار پس از طراحی به یکدیگر تبدیل میشوند استفاده نمود.
BFها توابع خواصی میباشند که با منطقی خاص ورودی/ خروجی را بهم ارتباط میدهند. پایههای بکار رفته در این توابع شامل ورودی 1 خروجی Q یا X میباشند. در جایی که نیاز به سیمبندی پایه نباشد از X استفاده میشود این توابع شامل:
AND:
از لحاظ مداری ارتباط سریال تعدادی کنتاکت Normally open میباشند و خروجی در صورتی یک میشود که کلیه ورودیها یک باشند.
AND WI TH RLO:
شکل سمت چپ در این تابع خروجی در صورتی یک میشود که همه ورودیها باشند و حداقل یک ورودی در سیکل قبلی حالت صفر داشته باشد.
NAND:
شامل اتصال موازی تعداد کنتاکت Normaly clos میباشد و خروجی زمانی یک میشود که همه ورودیها یک باشند.
AND WI TH RLO:
خروجی ANND زمانی یک میشود که حداقل یک وروی حالت صفر داشته باشد و همه ورودیها در سیکل قبل یک باشند.
OR:
شامل اتصال موازی تعداد کنتاکت Normaly open میباشد و خروجی زمانی یک میشود که حداقل یکی از ورودیها یک باشند.
NOR:
اتصال سریال تعدادی کنتاکت Normaly close میباشد و خروجی زمانی یک میشود که همه ورودیها صفر باشند و با یک شدن هر یک از ورودیها خروجی صفر میشود.
XOR:
اتصال دو کنتاکت Changeover میباشد و خروجی زمانی یک است که ورودیها حالت متفاوت داشته باشند. (هر دو یک یا صفر باشند خروجی صفر است).
ضمناَ گیت NOT هر چه در ورودی باشد عکس آنرا در خروجی اعمال میکند.
Specal function:
از لحاظ ورودیها با BFها متفاوتند و شامل توابع زمانی retentivity و انتخاب پارامترهای مختلف برای Update کردن برنامه باشد.
S(set): اجازه یک کردن خروجی را میدهد.
R (reset): بر همه ورودیها تقدم دارد و خروجی را صفر میکند.
Trg (tigger): برای شروع اجرای عملیات یک تابع استفاده میشود.
Con (counter): شمارش پالس را انجام میدهد.
Fre (frequency): سیگنالهای فرکانس سنجیده شده به این ورودی داده میشود.
Dir (direction): جهتی را که شمار نه باید شمارش نماید مشخص میکند.
En (enabel): تابع را فعال میکند در صورت صفر بودن En ورودیهای دیگر برای بلوک در نظر گرفته میشود.
Inv (ivert): با فعال شدن سیگنال خروجی بلوک معکوس میشود.
Rel (reset all): همه مقادیر داخلی reset میشود.
X: در صورت در نظر گرفتن این کانکتور برای Sf ، مقدار صفر برای آن در نظر گرفته میشود.