پی فایل

بهترین و عالی در ارائه فایل

پی فایل

بهترین و عالی در ارائه فایل

دانلود تحقیق بررسی پمپ های حرارتی سازگار با محیط زیست

تحقیق بررسی پمپ های حرارتی سازگار با محیط زیست در 35 صفحه ورد قابل ویرایش
دسته بندی مکانیک
فرمت فایل doc
حجم فایل 17 کیلو بایت
تعداد صفحات فایل 35
تحقیق بررسی پمپ های حرارتی سازگار با محیط زیست

فروشنده فایل

کد کاربری 6017

تحقیق بررسی پمپ های حرارتی سازگار با محیط زیست در 35 صفحه ورد قابل ویرایش

مقدمه

گرمایش و سرمایش ساختمانها در ایران در پنجاه سال گذشته سیر تکاملی قابل توجهی را طی کرده است . این سیر شامل گرمایش از طریق کرسی با استفاده از خاکه ذغال ، بخاری یا گرم کننده های نفت سوز با دودکش و بخاری های گاز سوز با دودکش برای هر یک از اتاقهای مورد استفاده ساختمان و گرمایش مرکزی با استفادهاز نفت گاز یا گاز طبیعی و بالاخره آب گرم در یک مرکز و گرمایش اتاقهای مورد استفاده به کمک رادیاتور یا فن کویل بوده است .

سیر سرمایش ساختمانها نیز شامل مراحل زیر بوده است . باز گرداندن در و پنجره های ساختمان و اجازه بر قراری جریان هوا در مواقعی که دمای هوای بیرون کمتر از دمای هوای اتاقهاست و یا جریان هوا می تواند به خنک کردن بدن ساکنان ساختمان کمک کند ، استراحت در سایه درختان حیاط در روز ، گذراندن روزهای بسیار گرم در زیر زمین ها و شبها در بالای بامها ، استفاده از بادبزنهای دستی ، استفاده از بادبزنهای برق رومیزی یا سقفی در اتاقها ، استفاده از کولرهای آبی ، استفاده از کولرهای گازی نوع تراکمی برای هر یک از اتاقهای مورد استفاده ،استفاده از سرمایش مرکزی به کمک چیلر های تراکمی و جذبی وتولید آب سرد در یکمرکز و خنک کردن یا سرمایش اتقاهای مورد استفاده به کمک فن کویل .

امروزه تقریباً تمامی ساختمانها گرمایش خود را با استفاده از سوختهای فسیلی و آب یا هوای گرم در اتاقها و سرمایش خود را کمک کولرهای آب و تولید هوای خنک ولی مرطوب تامین می کنند . در ساعاتی از شبانه روز در تابستان که دما و رطوبت نسبی هوا بالاست (و تعداد این ساعات با تغییرات اقلیمی کره زمین در حال افزایش است ) کولرهای آبی قادر به تامین آسایش برودتی ساکنان بسیاری از شهرهای ایران نیستند .از این نظر بسیاری از ساختمانها ، بویژه برجها ، از دستگاههای تبرید تراکمی و یا جذبی برای تولید برودت در تابستان استفاده می کنند .

بسیاری از شرکتهای تاسیساتی اقدام به ساخت دستگاههای تبرید جذبی - با استفاده از گاز طبیعی موجود در شهرها - در ظرفیتهای پایین برای آپارتمانها کرده اند . این اقدام که سوزاندن گاز را در طول سال در شهرها افزایش میدهد باعث افزایش آلودگی محیط زیست می شود . به علاوه دستگاههای تبرید جذبی در مقایسه با انواع تراکمی ، دارای ضریب کارایی بسیار پایین تری هستند و برای تولید مقدار معینی برودت ، ارنژی بیشتری نسبت به سیستم ها یتبرید تراکمی مصرف می کنند و چنانچه کندانسور آنها با آب خنک می شود نیاز به آب بیشتری در برج خنک کن دارند که در کشور کم آبی مانند ایران این موضوع مسائل مربوط به مصرف زیاد آب را به همراه دارد .

استفاده از پمپ های حرارتی برای سرمایش و گرمایش ساختمانها

با استفاده از پمپ های حرارتی نوع تراکمی می توان برودت مورد نیاز را در زمستان تامین و از آلوده تر شدن محیط زیست نیز جلوگیری کرد . استفاده از پمپ های حرارتی را می توان مدرت ترین و از نظر حفاظت محیط زیست بهترین روش برای تامین نیاز برودتی و حرارتی ساختمانها دانست . در ارتباط با اثرات زیست محیطی استفاده از پمپ های حرارتی می توان گفت که با جایگزین سوختهای فسیلی با برق ، مصرف سوختهای فسیلی در شهرها و آلودگی هوا (که به خصوص در زمستانها به دلیل وارانگی هوا به حد بحرانی خود می رسد )کاهش می یابد.

بررسی مختصر کارایی پمپ های حرارتی از نوع تراکمی

پمپ حرارتی یک دستگاه تبرید است که از حرارت دفع شده در کندانسور برای گرمایش ساختمان استفاده می کند و این عمل ازمنبع دمای پایین و انتقال حرارت به منبع دمای بالا انجام می شود . طرح پمپ حرارتی دفع شده در کندانسور را برای گرمایش ساختمان امکان پذیر کند و این در حالی است که همین سیستم از برودت تولید شده در اوپراتور برای خنک کردن ساختمان در تابستان استفاده می کند . لازم است اضافه شود که در بعضی از کاربردهای خاص ، پمپ حرارتی ممکن است بتواند به طور همزمان سرمایش و گرمایش مورد نیاز قسمتهای مختلف یک ساختمان را تامین کند.

منابع انرژی در پمپ های حرارتی ، منابع حرارتی ای هستند که پمپ حرارتی می تواند انرژی حرارتی مورد نیاز اوپراتور خود را از انها بگیرد. پمپ های حرارتی می تواند از منابع حرارتی مختلف مانند هوا ، آبهای جاری ، انرژی خورشیدی و حتی آب دور ریخته شده در هنگام استحمام و سایر شستشوها استفاده کند . لذا پمپ های حرارتی را می توان علاوه بر حسب سیکل ترمودینامیکی آنها ، بر حسب منابع حرارتی نیز تقسیم بندی کرد .

شکل 1 یک پمپ حرارتی را نشان می دهد که از هوای محیط به عنوان منبع انرژی استفاده می کند . اجزا اصلی این سیستم شامل کمپرسور ،‌کندانسور ،‌اوپراتور ، شیر انبساط یا لوله های مویی و شر چهار راهه است .


سیستم گرمایی و گرمایش با بخار آب داغ

گرمایش با بخار:

بخار یکی از موثرترین رسانه های گرمایی و قابل کاربرد در سیستم لوله کشی اغلب ساختمانها ست . یکی از ساده ترین سیستمهای گرمایش با بخار ، سیستم تک لوله ای ثقلی است . این سیستم برای نصب در خانه هایی با مسات متوسط که رادیاتورهای آن را به توان در ارتفاع حداقل 60 سانتی متری بالای سطح آب دیگ بخار نصب کرد ، مناسب است عملکرد آن ساده و با هزینه اولیه پایین است برخی از نقطه ضعفهای سیستم تک لوله ای ثقلی گرمایش با بخار به شرح زیر است .

1- برای آنکه بخار تقطیر شده سیستم (کندانس) بتواند در خلاف جهت حرکت بخار در لوله ای مشترک جریان باید ، نیاز به لوله ها و شیرهای رادیاتور با قطر بزرگ است .

2- بخار و کندانس در خلاف جهت یکدیگر حرکت می کنند و احتمال وقوع ضربه قوچ وجود دارد .

3- استفاده از شیرهای هوا گیری لازم است . اگر شیرهای هوا گیری برای خروج هوا ، همیشه باز نگه داشته شوند میزان انتقال حرارت کاهش و مصرف سوخت افزایش می یابد .

4- برای گرم کردن دمای مطبوع اتاق ، باید شیرهای رادیاتور را باز و بسته کردن آنها تنظیم کرد . با تنظیم خودکار جریان بخار خروجی از دیگ می توان دمای داخلی اتاق را تغییر داد .

برای غلبه بر مشکلات ناشی از حرکت بخار و کندانس در خلاف جهت . از سیستم دو لوله ای ثقلی گرمایش با بخار استفاده می کنند به غیر از موارد

1-اگر پره های میانی رادیاتور آ بند نباشند هوا می گیرند . این موضوع در موقع گرم شدن نزدیک ترین رادیاتور به دیگ بخار و ورود بخار به لوله برگشت اتفاق می افتد .

2-برای قطع جریان بخار باید در هر دو طرف رادیاتور شیر نصب کرد . در غیر این صورت بخار می تواند از هر دو لوله رفت و برگشت خارج شود .

3-خروجی های هر رادیاتور باید به طور جداگانه به لوله اصلی برگشت متصل شوند . در سیستم بخار مرطوب ، روی هر رادیاتور و در انتهای لوله اصلی بخار ، بله ترموستاتی نصب می کنند .

شیرهای ورودی رادیاتور در این سیستم از نوع تدریجی یا روزنه های هستند . فشار لازم بسیار پایین است (حتی کمتر از اره اتمسفر ) این سیستم در ساختمانهایی که فاصله بین سطح آب و دیگ بخار تا انتهای لوله برگشت 60سانتی متر است .

سیستم گرمایی با بخار مرطوب ، برترینهای نسبت به دیگر سیستمها دارد :

1-با توجه به بسته بودن سیستم ؤ امکان ورود به آن وجود ندارد . بنابراین خلاء متوسطی به وسیله تقطیر بخار در دما های پایین ایجاد می شود .

2- جریان بی سر و صدا و یکنواخت بخار بدون قفل شدن هوا و صدای قوچ فراهم می شود .

3-دمای اتاق می تواند به صورت خود کار به وسیله ترموستات تنظیم شود .

4-نصب شیرهای هوا گیری رادیاتور ها لازم نیست .

معایب سیستم گرمایش با بخار مرطوب عبارتند از :

1-لوله های قطور لازم دارد

2- فشار کار بخار ، پایین است .

3-برگشت کندانس به دیگ ، به صورت ثقلی است .

سیستم گرمایش تله برگشت بسیار سیستم گرمایش بخار بدون شیر هوا گیری است با این تفاوت که در این سیستم به دلیل وجود تله برگشت ، مایع کندانس دارای جریان برگشت مثبت به دیگ بخار است .

این سیستم می تواند در تمام ساختمانها بر ساختمانهای بزرگ به کار رود به شرط آن که ظرفیت تابش مستقیم معدل کمتر از ظرفیت تله برگشت باشد .

مزایای سیستم گرمایش با تله را شرح دهید .

1-به علت بالا بودن فشاذر بخار ، قطر لوله ها کم است .

2- جریان برگشت کندانس به دیگ بخار ، مثبت و سریع است .

3-کنترل سیستم با ترموستات امکان پذیر است .

5- توزیع بخار به وسیله شیر روزنه ای ، متعادل می شود .

معایب این سیستم عبارتنداز :

1-گردش بخار در سیستم تقریباً به طور کامل وابسته به فشار دیگ بخار است .

2-ارتفاع اتاق برای نصب لوله ها در بالای دیگ باید کافی باشد .

3-به دلیل محدودیت ظرفیت و اندازه های تله برگشت ، ظرفیت دیگ نیز محدود می شود .

مزیت سیستم گرمایش از نوع برگشت کندانس ، امکان پایین تر قرار گرفتن خط لوله برگشت از سحط آب دیگ ، کار در فشار بخار بالا است .اما سیستمهای خلاء متغیر و خط برگشت خلاء ،نیاز به لوله ها و تله های قطور تری دارند .

سیستم خط برگشت خلاء شبیه سیستم برگشت کندانس است با این تفاوت که در آن از یک پمپ خلاء برای ایجاد ضعیف در خط برگشت استفاده می کنند تا کندانس بتواند از خط برگشت به دیگ برگردد .

مزیای سیستم گرمایش بخار با خط برگشت خلاء به شرح زیر است:

1-کندانس دارای برگشت مثبت به طرف دیگر است .

2-هوا به صورت مکانیکی از بخار جدا شده و در نتیجه بخار سرعت گردش زیادی پیدا می کند .

3-به دلیل اختلاف فشار زیاد بین خطوط رفت و برگشت ، از لوله های کم قطر تری می توان استفاده کرد .

خط هوا – خلاء گونه ای از سیستم گرمایش تک لوله ای بخار است .هوا گیری های رادیاتور چای خود را به شیرهای هوایی که خروجی آنها به خط برگشت هوا متصل است می دهند .

برای خارج کردن هوای داخل سیستم از یک پمپ خلاء استفاده می کنند . شیرهای متصل به خط هوا از نوع ترموستاتی هستند .

مزایای این سیستم عبارتند از

1- گردش بخار سیستم سریعتر است .

2- بازده حرارتی رادیاتور ها ، در فشار های پایین تر ، بیشتر است .

3- هوا گیری های رادیاتور ها لازم نیست .


دانلود تحقیق بررسی آزمایش حرارت

تحقیق بررسی آزمایش حرارت در 13 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 28 کیلو بایت
تعداد صفحات فایل 13
تحقیق بررسی آزمایش حرارت

فروشنده فایل

کد کاربری 6017

تحقیق بررسی آزمایش حرارت در 13 صفحه ورد قابل ویرایش


آزمایشگاه حرارت

- خطاهایی که در هر آزمایش وارد می شود :

1- خطای آزمایشگر

2- خطای وسایل آزمایش

3- خطای محیط

- اندازه گیری در آزمایش :

1- خطای مطلق : تفاوت اندازه واقعی جسم ، اندازه ای که در آزمایش بدست آمده است .

2- خطای نسبی =

3- در صد خطای نسبی : 100* خطای نسبی

- نکاتی که در تهیه یک گزارش برای آزمایش باید رعایت کرد :

1- موضوع آزمایش

2- تاریخ

3- اسامی افرادی که در یک گروه آزمایش انجام می دهند .

4- نام استاد

5- شرح آزمایش

6- نوشتن روابط و فرمولهای مربوطه

7- رسم جداول و نمودارهای لازم

8- نتیجه گیری

9- بدست آوردن خطاها

10- عوامل موثر در خطا

- تعیین ظرفیت گرمایی کالری متر (گرماسنج ) ، ارزش آبی گرماسنج A

- ظرفیت گرمایی جسم :

مقدار گرمایی که جسم می گیرد تا دمای آن یک درجه سانتی گراد افزایش (کلوین) افزایش یابد J/K

-ظرفیت گرمایی ویژه جسم :

مقدار گرمایی است که به یکای جرم داده می شود تا دمای آن یک درجه کلوین افزایش یابد J/kg k

m : جرم کالری متر

m1 :جرم آب سرد

m2 : جرم آب گرم

c : آب = C=4/2j/kg k

- تعیین میزان تغییرات

- هر پنچ درجه که آب سرد شد طول را اندازه گیری می کنیم .

شرح آزمایش :

ابتدا طول میله مخصوص را اندازه گیری می کنیم سپس آب را تا اندازه جوش گرم می کنیم هنگامیکه بخار آب بهمیله رسید حرارت را قطع می کنیم هنگامیکه افزایش طول متوقف شد طول میله را اندازه گیری می کنیم همراه میزان درجه آب ، به بعد هر 5 درجه که آب سرد شد میله را اندازه گیری کرده و اینکار را تا جایی که طول دیگر تغییر نکند تکرار می کنیم .

میزان خطای ساعت اندازه گیری = 05/0 میلی متر که هر عددی که بدست آمد باید منهای این عدد شود .

مرحله یک :

=20 c

77 c= /64 - 68 c=/45-63 c=/35-58 c=/26

3 c= /20 - 48 c= / 13 -43 c =/9- 38 c = 0/05



مرحله دوم :

=34 c

80 c= /65 -75 c=/50 - 70 c=/42 - 65 c= /35 - 60 c= /28

55 c= /22 -50 c=/ 17 - 45 c= /12 - 40 c =/09







نتیجه گیری :

از این آزمایش نتیجه می گیریم که با تغییر میزان دما تا حدی جسم انبساط یافته و بعد از آن دما تغییرطولی مشاهده نمی شود همین طور وقتی جسم سرد شود به همین صورت .

خطا های آزمایش :

عوامل موثر در خطا :

به دلیل عایق نبودن صحیح وسیله آزمایش با محیط خارج دمای محیط هم به اضافه دمای بخار آب روی جسم تغییر حاصل می کند. همچنین صحیح خواندن اندازه و درجه حرارت بخار آب و جسم در جواب تاثیر گذار است .

گرمای نهان تبخیر :

مقدار گرمایی به واحد جرم مایع در نقطه جوش داده می شود تا به بخار آب تبدیل شود . بدون آنکه دمایش تغییر کند .

موضوع : تعیین گرمایی نهان تبخیر


دانلود گزارش کاراموزی انتقال حرارت در توربین

گزارش کاراموزی انتقال حرارت در توربین در 144 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 3223 کیلو بایت
تعداد صفحات فایل 144
گزارش کاراموزی انتقال حرارت در توربین

فروشنده فایل

کد کاربری 6017

گزارش کاراموزی انتقال حرارت در توربین در 144 صفحه ورد قابل ویرایش

مقدمه

در این فصل ما بر روی تاثیر پارامترهای گوناگون و خصوصیات انتقال حرارت خارجی اجزاء توربین تمرکز می نماییم.پیشرفتها در طراحی محفظه احتراق منجر به دماهای ورودی توربین بالا تر شده اند که به نوبه خود بر روی بار حرارتی و مولفه های عبور گاز داغ تاثیر می گزارد.دانستن تاثیرات بار حرارتی افزایش یافته از اجزایی که گاز عبور می کند طراحی روشهای موثرسرد کردن برای محافظت از اجزاء امری مهم است.گازهای خروجی از محفظه احتراق به شدت متلاطم می باشد که سطوح و مقادیر تلاطم 20تا 25% در پره مرحله اول می باشد.مولفه های مسیر گاز داغ اولیه ،پره های هادی نازل ثابت و پره های توربین درحال دوران می باشد. شراعهای توربین، نوک های پره، سکوها و دیواره های انتهایی نیز نواحی بحرانی را در مسیر گاز داغ نشان می دهد. برسی های کار بردی و بنیادی در ارتباط با تمام مولفه های فوق به درک بهتر و پیش بینی بار حرارتی به صورت دقیق تر کمک کرده اند . اکثر برسی های انتقال حرارت در ارتباط با مولفه های مسیر گاز داغ مدل هایی در مقیاس بزرگ هستند که در شرایط شبیه سازی شده بکار می روند تا درک بنیادی از پدیده ها را فراهم سازد. مولفه ها با استفاده از سطوح صاف و منحنی شبیه سازی شده اند که شامل مدل های لبه راهنما و کسکید های ایرفویل های مقیاس بندی شده می باشد. در این فصل، تمرکز بر روی نتایج آزمایشات انتقال حرارت بدست آمده توسط محققان گوناگون روی مولفه های مسیر گاز خواهد بود. انتقال حرارت به پره های مرحله اول در ابتدا تحت تاثیر پارامترهای از قبیل پروفیل دمای خروجی محفظه احتراق،تلاطم زیاد جریان آزاد و مسیر های داغ می باشد .انتقال حرارت به تیغه های روتور مرحله اول تحت تاثیر تلاطم جریان آزاد متوسط تا کم ، جریان های حلقوی نا پایدار ، مسیر های داغ و البته دوران می باشد.

2.1.1- سرعت خروجی محفظه احتراق و پروفیل های دما

سطوح تلاطم در محفظه احتراق خیلی مهم هستند که ناشی از تاثیر چشمگیر انتقال حرارت همرفتی به مولفه های مسیر گاز داغ در توربین می باشد. تلاطم تاثیر گزار بر روی انتقال حرارت توربین ها در محفظه احتراق تولید می شود که ناشی از سوخت به همراه گاز های کمپرسور می باشد.آگاهی از قدرت تلاطم تولید شده توسط محفظه احتراق برای طراحان در بر آورد مقادیر انتقال حرارت در توربین مهم است.تلاطم محفظه احتراق کاهش یافته، می تواند منجر به کاهش بار حرارتی در اجزاء توربین و عمر طولانی تر و همچنین کاهش نیاز به سرد کردن می شود. بر سی های انجام شده بر روی اندازه گیری سرعت خروجی محفظه احتراق و پروفیل های تلاطم متمرکز شده است.

Goldstein سرعت خروجی و پروفیل های تلاطم را برای محفظه احتراق مدل نشان داد.Moss وOldfield طیف های تلاطم را در خروجی های محفظه احتراق نشان دادند.هرکدام از بر سی های فوق در فشار اتمسفر و دمای کم انجام شد. اگرچه بدست آوردن بدست آوردن انرازه گیری ها تحت شرایط واقعی مشکل است اما برای یک طراح توربین گاز درک بهبود هندسه محفظه احتراق و پروفیل های گاز خروجی از محفظه امری ضروری است. این اطلاعات به بهبود شرایط هندسه و تاثیرات نیاز های سرد کردن توربین کمک می نماید.







اخیرا"،Goebel سرعت محفظه احتراق و پروفیل های تلاطم در جهت موافق جریان یک محفظه احتراق کوچک با استفاده از یک سیستم سرعت سنج دوپلر ولسیمتر(LDV)را اندازه گیری کردنند.آنهاسرعت نرمالیزه شده،تلاطم وپروفیل های دمای موجود برای تمام آزمایش های احتراق را نشان دادند.آنها یک محفظه احتراق از نوع قوطی مانندبکار رفته در موتور های توربین گاز مدرن را استفاده کردند، که در شکل1-2نشان داده شده است.جریان از کمپرسور و از طریق سوراخ ها وارد محفظه احتراق می شود و با سوخت محترق در محل های متفاوت در جهت موافق جریان مخلوط می شود. طراحی محفظه احتراق حداقل مستلزم یک افت فشار از طریق محفظه احتراق تا ورودی توربین است.فرایند محفظه احتراق توسط اختلاط تدریجی هوای فشرده با سوخت در محفظه قوطی شکل کنترل می شود. طراحان محفظه احتراق نوین نیز بر روی مشکلات و مسائل ترکیب و فرایند اختلاط هوا-سوخت تمرکز می نمایند احتراق تمیز نیز یک مسئله و کانون برای طراحان ناشی از استاندارد های محیطی الزامی شده توسط دولت فدرال آمریکا و EPA می باشد. با این حال ،طراح محفظه احتراق یک مسئله مورد بحث در این کتاب نمی باشد.



- استیج توربین موتور واقعی:

درک جنبه های انتقال حرارت برای تمام مولفه های(اجزاء) توربین تحت شرایط واقعی امری مهم است.بعنوان نمونه، سنجش هایی که بر روی یک توربین تک مرحله تحت شرایط موتور می توانند برای فراهم کردن تمام اطلاعات انتقال حرارت درباره اجزای مسیر گاز استفاده شود.تجهیزات و آزمایشات در مورد استیج های توربین واقعی تحت شرایط موتور بسیار نادر هستند.فقدان ابزارهای دقیق اندازه گیری دما بالا و دشواری در تجهیز توربین با دستگاه های اندازه گیری دما و فشار از جمله دلایل تلاش های محدود در بررسی انتقال حرارت یک استیج واقعی تحت شرایط موتور واقعی می باشند.

اکثر نتایج اولیه بر روی انتقال حرارت روتور- استاتور واقعی توسطDunn از مرکز فن آوری پیشرفته Calspan تهیه شده اند.Dunn مقدار قابل توجهی از اطلاعات درباره اندازه گیری های فلوی( جریان ) حرارت برای پره های هادی نازل(دیوار انتهای وایرفویل ها)،پره روتور، نوک روتور، سکو و شراع ها(shroud) را ارائه کرد. Dunn از یک توربین گردان کامل از موتور Gerratt TFE 731-2 استفاده کرد.آنها اندازه گیری فلوی حرارت درباره پره هادی نازل (NGV)، روتور و شراع توربین گزارش کردند.یک مجموعه شوک- تونل برای

ارائه شرایط خوب تعریف شده در نظر گرفته شد و تعداد کافی از پارامترها برای بهبود اطمینان در اطلاعات طراحی و فنون در حال توسعه مطرح گردید. اندازه گیری های فشار استاتیک با استفاده از آشکار سازهای فشار بر روی مقطع کلی توربین بدست آمدند.


شکل 10-2 توزیع عددstanton بر روی تیغه روتور را نشان می دهد. تحلیل اطلاعات بخوبی تحلیل برای NGV ناشی از مسئله اضافی بدست آوردن اطلاعات بر روی یک مولفه گردان نمی باشد.توزیع های عدد stanton مشابه روی سطوح فشار ومکش پره می تواند به دوران پره کمک نماید. Dunn نشان می دهد که آنها مشاهده کردند تاثیر دوران تغییرات توزیع عدد stanton برروی فویل هوای را کاهش میدهد. عدد اوج stanton در فصله تقریبی 3.5% در سمت فشار رخ می داد. عدد stanton به سرعت از لبه هدایت کننده تا حدود 30% فاصله سطح سقوط می کند. توزیع فشار برای پره نشان می دهدکه جریان در حدود37% فاصله سطح در طرف مکش سونیک می شود.در این نقطه عددstanton سطح زیاد می شود و به حداکثر مقدار فاصله سطح دیگر حدود 70% میرسد.جدای از فاصله سطح 70% ، اعداد stanton به طرف دنباله لبه کاهش می یابد . با این حال Dunn هیچ اندازه گیری نزدیک ناحیه دنباله لبه ندارد مگر یک نقطه واحد در فاصله سطح 90% . روی سطح فشار پره عدد stanton از یک مقدار حداکثر در فاصله دور 3.5% تا یک مقدار حداقل در فاصله سطح 25% افت می کند.این یک ناحیه دارای شیب فشار قوی میباشدکه باعث کاهش سرعت جریان بر روی سطح فشار می گردد.سپس در جهت موافق جریان عدد stanton مجددا"تا یک مقدار زیاد در حدود فاصله سطح 70% مانند حالت سطح مکش زیاد می شود.مقادیر عدد stanton از فاصله سطح 70% تا دنباله لبه بر روی سطح فشار کم میشوند.




2.3.2- تاثیر عدد ماخ خروجی و عدد رینولدز:

Nealy توزیع های انتقال حرارت بر روی پره های هدایت نازل بار گیری شده زیاد را در دمای متوسط نشان می دهد و سه پره تحت شرایط حالت یکنواخت قرار دارند. آنها پارامتر ها را تغییر دادند از قبیل عدد ماخ، عدد رینولدز، شدت آشفتگی و نسبت دمای دیوار به گاز. اطلاعات آزمایشگاهی در مجموعه کسکید آیروترمودینامیک در شرکت موتور السیون بدست آمدند. Nealy نشان داد که مکانیزم های پایه ای وجود دارد که بر انتقال حرارت گاز به فویل هوا تاثیر می گذارند. آنها رفتار زودگذر لایه مرزی ، آشفتگی جریان آزاد، انحنای سطح ایرفویل ،زبری سطح ایرفویل ، شیب فشار ، محل تزریق ماده خنک کننده، جدایش و اتصال مجدد جریان و اندر کنش لایه مرزی – شوک بصورت مکانیک های پایه بررسی کردندکه تاثیرات آنها لازم است بر انتقال حرارت فویل هوا تعیین شود.در این بررسی آنها توجه خود را روی عدد ماخ کسکید خروجی ،عدد رینولز و شکل ایرفویل متمرکز کردند. شکل 21-2 پروفیل های سطح را برای در پره کسکید نشان می دهد. طرح های دو پره موسوم به Mark ?? وC3X دارای شکل هندسی سطح مکش کاملا" متفاوت می باشند. آزمایشات روی این دو طرح یک آگاهی نسبت به تاثیر شکل هندسی سطح مکش برانتقال حرارت را فراهم کردند.


می شوند. مدت دوام نسبی مسیر برابر با نسبت زمان دوام مسیر به پریودعبور مسیر است. بامشاهده حالت های مختلف واضح است که ضریب انتقال حرارت سطح مکش برای هر حالت بدلیل گذار لایه مرزی قبلی بالاتر هستند.محل گذار با افزایش فرکانس مسیردر جهت مخالف جریان به طرف لبه هدایت کننده نزدیک می شود. محل گذار از یک فاصله سطح 1.0~s/l به حدود0.3 برای بالاترین فرکانس مسیر حرکت می کند.حالت آشفتگی تولید شده توسط شبکه دارای یک محل گذار در حدود 0.2~s/l می باشد. Dullenkopf نشان داد که ناحیه آشفته و مسیر جریان آزاد در خارج از لایه مرزی بطور مستقل عمل می کنند هنگامی که گذار توسط مسیر در هر محل آغاز می شود.توزیع ضریب انتقال حرارت میانگین زمانی حاصل از کسر زمان آشفته و لایه ای تشکیل می شود،که در آن کسر زمان آشفته در طول سطح افزایش می یابد. این امر افزایش طول زود گذر در مقایسه با حالت خط پایه (بدون میله ها) را نشان می دهد.سطح فشار یک تاثیر کمتر در مقایسه با تاثیرسطح مکش را نشان می دهد. این امر ممکن است رخ دهد زیرا intermittency ایجاد شده توسط مسیر تقریبا" ثابت است. جزئیات بیشتر در باره تاثیرات intermittency موضعی در بخش بعدی بحث خواهد گردید.

2.4.3- پیش بینی های انتقال حرارت تحت تاثیر مسیر:

همانطور که در بالا شرح داده شد، یکی از دلایل اصلی جریان ناپایدار در توربین های گاز عبارتند از انتشار مسیر ها ازایرفویل های هوایی در جهت مخالف جریان می باشد. این مسیر ها جریان آزاد را با یک سرعت ناپایدار پریودی ، دما و شدت آشفتگی اعمال می کنند. کاهش سرعت همراه با مسیر ممکن است یک جریان همرفتی را بطرف سطح یا مخالف آن ایجاد نماید.مسیر ها یک گذار لایه مرزی لایه ای به آشفته ناپایدار زود هنگام را ایجاد می کنند تا در طرف مکش اتفاق بیافتند. انتقال حرارت همراه با جریان ناپایدار بطور واضح گذار لایه مرزی زود هنگام را نشان می دهد(شکل43-2).

در این بخش ،ما بر روی نظریه Mayle ومحققان همکاراوتمرکز می نماییم تا انتقال حرارت بر سطح را تحت تاثیرعبور مسیر ناپایدار پیش بینی نماییم.Mayle تاثیر گذار آشفته لایه ای را در طراحی موتور توربین گاز نشان داد و پیشنهادهایی با ارزش برای بررسی های بعدی ارائه کرد.او یک شرح عمومی از گذار و شکل های مختلف آن ارائه کرد و نکات نظری و عملی را برای هر حالت گذار امتحان نمود.