پی فایل

پی فایل

بهترین و عالی در ارائه فایل
پی فایل

پی فایل

بهترین و عالی در ارائه فایل

دانلود گزارش کاراموزی کارگاه غیر آهنی 2

گزارش کاراموزی کارگاه غیر آهنی 2 در 50 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 4136 کیلو بایت
تعداد صفحات فایل 50
گزارش کاراموزی کارگاه غیر آهنی 2

فروشنده فایل

کد کاربری 6017

گزارش کاراموزی کارگاه غیر آهنی 2 در 50 صفحه ورد قابل ویرایش

فهرست

عنوان صفحه

آلومینیم .....................................................................4

و بررسی عوامل موثر بریز.............................12 دانگی آلیژاهای آلومینیوم

مس......................................................... ................7

چدن های داکتیل .............................................. ............11

برنج ............................................. .................................47

برنز ها................................... .. ....................................51

آلیاژ های روی............................ ..............................57













آلومینیم

آلومینیم با علامت شیمیایی AL و شبکه کریستالی FCC می تواند اتم های عناصری مثل کربن ،نیتروژن،بر ، هیدروژن و اکسیژن را به دلیل شعاع اتمی کوچک که دارد در خود به شکل محلول جامد بین نشین حل نماید.

نقطه ذوب 660 درجه سانتیگراد و نقطه جوش آن 2750 درجه می باشد. آلومینیم را در دماهای 1000 درجه و بالاتر از آن استفاده نمی کنند به دلیل اینکه شدیدا اکسید شده و تلفات آن زیاد می باشد. ولی منیزیم و روی این مقدار بیشتری از آلومینیم تلفات دارند. وزن مخصوص 7/2 می باشد و در حالت مذاب 3/2 بنابراین می توان نتیجه گرفت در حالت مذاب انبساط آن زیاد می باشد.در صد انقباض آن در فاز مایع 10% و در حین انجماد 8/6% است و به دلیل انقباض های زیاد به تغذیه در قعات آلومینیم ضرورت می یابد.مهمترین آیاژهای آلومینیم عبارتند از : آلیاژ آلومینیم با منیزیم – مس و سیلیسیم و یا آلیاژهای با ترکیب این سه عنصر لذا در اثر آلیاژ نمودن خواص مکانیکی مقاومت به خوردگی و ماشین کاری آلومینیم افزایش می یابد . به هر حال آلومینیم و آلیاژهای آن به دلیل نقطه ذوب پایین ، سیالیت زیادی که دارد افزایش خواص مکانیکی در اثر آلیاژ سازی و همچنین قابلیت عملیات حرارتی را دارد.

منحنی سرد شدن تعادلی مواد فلزی با یکدیگر متفاوت است مثلا یک آلومینیم خاص را با یک آلیاژ دیگر در نظر بگیرید در فلز خاص در یک دمای خاص انجماد صورت می گیرد .

در صورتی که در یک آلیاژ انجماد در یک فاصله در جه حرارتی صورت می گیرد.

عملیات گاز زدایی با استفاده از گازهای فعال مثل کلر : اگر درجه حرارت 180 درجه برسد ترکیب فوق به شکل حباب در آمده ( فرار می باشد ) و هید روژن به داخل آن نفوذ می کند هر چه عمق مذاب بیشتر باشد گاز زدایی یا بازده ی آن بیشتر می شود. عملا باید 6/0 % گاز کلر مصرف شود که بستگی به نوع آلیاژ نوع کوره و شرایط وارد کردن گاز و روش تهیه قالب و رطوبت هوا دارد.

گاز زدایی باکلر نسبت با ازت برتری دارد چون گاز کلر حباب کارید آلومینیم ریز و بیشتری تولید می کند .





کلر معایبی هم دارد که عبارتست از :

1- سمی بودن کلر 2- تلفات آلومینیم

عملیات با کلرید ها قدیمی ترین روش گاز زدایی می باشد و بر اساس واکنش کلر با فلز است . در این روش تر کیبات کلرید تجزیه شده و در انتخاب کلرید بایستی دقت شود تا ناخالصی وارد مذاب نشود.آلیاژ های Mg-Al که تا 2%Mg خالص به مذاب AL تولید می شود. بدیهی است که تلفات این عنصر زیاد می باشد و از این رو اغلب از آمیژن این عنصر با 10 % Mg استفاده می شود.سیالیت آلیاژهای Mg کم بوده و از این سیستم های راهگاهی معمولا از اندازه عادی بزرگتر انتخاب می گردد.

آلیاژهای Si-Al-Mg :

دو عنصر آلیاژی Si و Mg قادر به ترکیب بوده و ترکیب بین فلزی را بوجود می آورند این عناصر به عنوان یک سیستم آلیاژی شبه دو تایی عمل می کند.

این سیسیتم سه تایی سیستمی است که می توان آن را تحت عملیات حرارتی محلولی و پیر سختی قرار داد . آلیاژهای سه تایی دارای مزیت سیستم شبه دو تایی و همچنین اثرات مفید Si محلول درصد کم Mg تا حدود 3/0 % و درصد های بالای Si یعنی 6-8 %می باشد.

افزایش بیشتر Si باعث بهبود خواص ریخته گری این آلیاژ ها می شود . در بعضی از آلیاژها ترکیب سیلیسیم و منیزیم مضر هستند که در نتیجه به عنوان نا خالصی محسوب می شوند .

به خاطر این که تمامی آلیاژ Al دارای Si می باشد افزایش سختی در اثر تشکیل می باشد و با افزایش این سختی آلیاژ ترد و شکننده می شود.

از خواص قطعات ریخته گری Al می تواند به قابلیت ماشین کاری ، قابلیت پرداخت کاری ، جوش کاری، لحیم کاری و قابلیت عملیات سختی سطحی اشاره کرد . این آلیاژ دارای خواص دیگری مانند استحکام برشی ، استحکام فشاری و مقاومت به خوردگی نیز می باشد.

وزن مخصوص کم:
یک متر مکعب آلومینیوم خالص 8/2827 کیلوگرم وزن دارد و یک متر مکعب از سنگین‌ترین آلیاژهای آلومینیوم (یعنی آلیاژهای حاوی مس و روی) دارای وزنی در حدود 2953 کیلوگرم است. حتی این سنگین‌ترین آلیاژ‌های آلومینیوم نیز حداقل 1978 کیلوگرم در هر متر کعب سبک‌تر از وزن هم حجم سایر فلزات ساختمانی (بجز منیزیم) است.

پوشش سخت دادن Hard Coating:
یکی از فرآیندهای آندایزه کردن است که به تدریج اهمیت پیدا می‌کند و آن را آندایزه کردن سخت یا پوشش سخت دادن می‌نامند. این فرآیند گرچه در اساس مشابه آندایزه کردن معمولی است ولی از چند نقطه نظر با آن تفاوت دارد. در پوشش سخت، محلول مورد استفاده اسید سولفوریک و درجه حرارت عمل پایین‌تر است. فرآیند بقدری ادامه می‌یابد که لایه اکسیدی به ضخامتی تا حدود 5 برابر ضخامت آندایزه کردن معمولی برسد.

پوشش آلومینیومی دادن Alcladding:
بطور کلی آلیاژهای آلومینیوم با استحکام زیاد از نظر خوردگی کم مقاومترین آنها محسوب می‌گردند. این مطلب بخصوص در مورد آلیاژهای حاوی درصدهای زیاد مس یا روی صادق است. از طرف دیگر مقاومت به خوردگی آلومینیوم خالص بسیار زیاد است. پوشش آلومینیومی دادن یکی از روشهای افزایش مقاومت خوردگی به یک آلیاژ با استحکام زیاد است. در این فرآیند یک لایه آلومینیوم خالص به سطح آلیاژ مورد نظر متصل شده و در نتیجه مجموعه حاصل خواص مورد نظر حاصل می‌شود. این روش مخصوصاً در محصولات ورقه‌ای مناسب است.





ریخته گری در قالبهای مختلف آلومینیم :

ریخته گری در قالب های فلزی – ریخته گری در قالبهای ماسه

در قالبهای فلزی در رابطه با آلیاژهای آلومینیم – سیلیسیم با افزایش درصد سیلیسیم سختی پیوسته افزایش می یابد با افزایش در صد سیلیسیم تا حدود 12% استحکام کششی افزایش و بعد از آن کاهش می یابد و همچنین با افزایش آن تا حدود 6% از دیادطول کاهش می یابد.

در رابطه با قالب های ماسه ای با افزایش درصد سیلیسیم تا حدود 22% استحکام افزایش و بعد از آن کاهش می یابد .

افزودن سیلیسیم به مذابآلومینیم توسط آلیاژ ساز های آلومینیم-سیلیسیم که دارای 13 تا 23 % سیلیسیم می باشد صورت می گیرد این آلیاژ ساز به دلیل نقطه ذوب پایین یعنی 580 درجه سانتیگراد به راحتی در مذاب آلومینیم قابلیت حل شدن دارند.

روش های مختلف قالبگیری آلیاژهای آلومینیم :آلیاژهای آلومینیم با کلیه روش های قالبگیری موقت ماسه ای ، گچی پوسته ای ، سرامیکی و قالب های فلزی و قالب های تحت فشار قابلیت ریخته گری دارند.

ریخته گری در قالب های ماسه ای از انواع ماسه های سیلیسی ، زیرکنی ، کرومیتی استفاده می شود و در قالب های فلزی جنس قالب های فلزی از چدن خاکستری پر کربن بوده و سطح آن را با گرافیت پوشش می دهند..

اثرات متقابل هیدروژن محلول در مذاب و عملیات بهسازی با استرانسیم بر تخلخل در آلیاژ آلومینیم 319

چکیده مطلب

افزودن استرانسیم اصلاح ساختار سیلسیم یو تکتیکی از حالت درشت و سوزنی به حالت ظریف و رشته ای شکل ، هم اکنون بعنوان یک فرایند مهم در ذوب آلیاژهای آلومینیوم - سیلسیم مورد استفاده قرار می گیرد. یکی از اثرات جانبی عملیات بهسازی با استرانسیم ، افزایش تخلخل در قطعات ریخته گری است. در این پژوهش اثر عملیات بهسازی بر تخلخل در شرایط انجماد اتمسفری (فشار 1 اتمسفر ) و انجماد تحت خلا نسبی مورد بررسی قرار گرفته است. نتایج بدست آمده نشان داد در صورت استفاده از قالب فنجانی شکل جدار نازک (قالب متداول در آزمایشات انجماد تحت خلا نسبی ) عملیات بهسازی با استرانسیم تاثیر قابل ملاحظه ای بر تخلخل ندارد.

تاثیر عوامل مختلف بر ریز ساختار آلومینیم و چدن نشکن نیمه جامد در روش سطح شیبدار

چکیده مطلب

روش استفاده از سطح شیبدار یکی از جدیدترین روشهای تولید قطعات از طریق ریخته گری نیمه جامد - نیمه مایع می باشد که از تکنولوژی ساده تری نسبت به روشهای متداول دیگر از قبیل ریخته گری همزدنی یا مغناطیسی برخوردار است. پارامترهای موجود در این روش مانند طول و زاویه سطح شیبدار تعیین کننده زمان و میزان اعمال تنش بر مخلوط نیمه جامد در حین عبور از سطح شیبدار هستند. در تحقیق حاضر تاثیر پرامترهای مذکور بر ریز ساختار آلیاژ A1365 و چدن نشکن با استفاده از سطح شیبدار مسی مورد بررسی قرار گرفته است...
کلیدواژگان:Gray Cast iron , Silicon content , Microstructure , cooling curve , Mechanical properties.


چکیده :
در تحقیق حاضر تاثیر انواع متغیر های ریخته گری را بر روی ریز دانگی آلیاژهای آلومینیوم مطالعه و بررسی شده است. تحقیقات نشان داده است که عوامل متعدد و روشهای گوناگونی جهت ریز دانگی آلیاژهای آلومینیوم وجود دارد. بطور عمده به سه روش گرمایی (1-سرعت سرد کردن 2-فوق ذوب 3-فشار ) ، شیمیایی (1- مواد جوانه زا 2-پودر فلزات ) و دینامیکی (1-لرزانش 2-حبابهای گازی 3-پوششهای فرار) تقسیم بندی می شوند. در پروژه حاضر عوامل و روشهای گوناگون به طور مطلوبی بررسی شده و یکی از روشها که لرزانش مذاب است بطور عملی آزمایش گردیده است. به این منظور 6 نمونه ریخته شده و مورد بررسیهای ماکروسکوپی قرار گرفتند. این بررسی ها نشان داد که در عملیات لرزانش ریزدانگی به صورت بسیار خوبی صورت گرفته است ولی در عین حال سبب افزایش خلل وفرج شده است.

مقدمه
عموما ساختارهای ریز دانه دارای خواص مطلوب تری از ساختارهای درشت دانه می باشند.به این منظور همواره ریخته گران به دنبال یافتن روشهای برای ریز کردن دانه ها می باشند.اضافه کردن جوانه زا به مذاب متداول ترین روش ریز کردن دانه ها می باشد. علاوه بر این روش، عوامل و روشهای دیگری نیز برای ریز کردن دانه ها وجود دارد که در شرایط خاص مورد استفاده قرار می گیرند. این پژوهش در پی آن است که عوامل و روشهای گوناگون مطرح در مقالات منتشر شده را به طور خلاصه بررسی نماید. همچنین روش لرزانش مذاب در همگام انجماد را بصورت عملی مورد آزمایش قرار دهد.


1-بررسی مقالات علمی :
روشهای ریز کردن دانه بندی آلیاژهای آلومینیوم بطور عمده به سه روش گرمایی (1-سرعت سرد کردن 2-فوق ذوب 3-فشار ) ، شیمیایی (1- مواد جوانه زا 2-پودر فلزات ) و دینامیکی (1-لرزانش 2-حبابهای گازی 3-پوششهای فرار) تقسیم بندی می شوند، که در زیر به تفکیک مورد بررسی قرار می گیرند.

1- 1- روشهای گرمایی:

1-1-1- تاثیر سرعت سرد کردن بر اندازه دانه:
سرعت سرد شدن به عنوان یک پارامتر مهم در انجماد قطعات ریختگی همواره مورد توجه بوده است . سرعتهای انجمادی مختلف باعث تغییر ریز ساختار ، اندازه دانه ، مورفولوژی سیلیسیم

یوتکتیکی ، فاصله بین بازوهای دندریت و فازهای بین فلزی و بطور کلی خواص مکانیکی آلیاژ های آلومینیم می گردد .
برای بررسی اثر سرعت سرد کردن دو گونه آزمایش انجام شده است. تعدادی با استفاده از نمونه پله ای جهت بررسی اثر ضخامتهای مختلف (سرعتهای مختلف سرد شدن ) بر روی ریز دانگی و تعداد دیگری با استفاده از انواع مختلف قالب ( جنس قالب و میزان انتقال حرارت در آن ) به بررسی اثر نوع قالب بر روی ریز دانگی پرداخته اند.
پس از بررسی نمونه ها مشاهده گردیده است با افزایش ضخامت از 5 تا 30 میلیمتر اندازه دانه ها زیاد می شود علت افزایش اندازه دانه در ضخامتهای بالاتر افزایش زمان انجماد و کاهش سرعت سردشدن می باشد که منجر به ایجاد دانه های درشت تر در انتهای انجماد می گردد . با توجه به نتایج تجربی بدست آمده ( شکل (1)) مقدار افزایش اندازه دانه حدود 8 درصد می باشد. [1]

-1-نتیجه گیری از آزمایش:
پژوهش حاضر نشان می دهد که لرزانش مذاب در حین انجماد اثرات قابل ملاحظه ای بر ساختار ماکروسکوپی آلیاژهای Al - Si دارد در این آلیاژها لرزانش مذاب سبب تشکیل دانه های محوری ریز به جای دانه های درشت و ستونی در ساختار ماکروسکوپی می گردد. (جدول 2) از طرف دیگر مشاهده می گردد که با ریز شدن دانه بندی، میزان تخلخل بشدت افزایش یافته و از چند درصد به بیش از 10 درصد افزایش یافته است. این امر باعث میگردد که بهبود خواص مکانیکی که از ریز بودن دانه بندی انتظار میرود بدلیل وجود تخلخل زیادتر حاصل نگردد.
این بدین معنا است که ریز کردن دانه ها به وسیله لرزانش باعث افزایش تخلخل نیز می گردد و در نتیجه در مجموع باعث میگردد خواص مکانیکی افزایش نیابد و در نهایت قطعات تولیدی دارای کیفیت کمی باشند. این موضوع (ایجاد تخلخل) محدودیتی است که گسترش استفاده از لرزانش را در تولید قطعات تا ده ها سال پس از دست یابی بشر به این دانش فنی در دهه 1930 میلادی به تاخیر انداخت. در دهه 1960 میلادی تکنولوژی استفاده از (Hot Isostatic Press) HIP به منظور مسدود کردن تخلخل ها پس از ریخته گری باعث گسترش استفاده از لرزانش در تولید قطعات ریخته گری گردید.[10]
HIP روشی است که در آن قطعات در دماهای بالا تحت فشار همه جانبه بالایی قرار میگیرد و طی آن تخلخل های درونی قطعه از بین می رود.
اندازه متوسط دانه ها بشدت به دامنه ارتعاشات بستگی دارد و با افزایش دامنه ارتعاشات اندازه دانه ها کاهش می یابد. از طرف دیگر لرزانش مذاب سبب ریزتر و کروی تر شدن فاز سیلیسیم می گردد این عملیات در صورت کم بودن دامنه ارتعاشات سبب کاهش مقدار تخلخل می گردد ولی در نمونه ریخته شده به دلیل زیاد بودن دامنه ارتعاشات افزایش میزان تخلخل مشهود می باشد.



مس

معمولا این نوع آلیاژ ها در صنایع الکترونیک و برق استفاده می شود که تا حدود 2 درصد شامل ناخالصی می باشد و جود ناخالصی باعث کاهش هدایت الکتریکی آلیاژ می شود ناخالصی های موجود شامل روی آرسنیک کادمیم سیلیسیم کرم ونقره می باشد به علت قابلیت اکسیداسیون بالا و انجماد خمیری و سیالیت پایین ریخته گری این آلیاژ مشکل می باشد
برنج آلیاژ مس – روی (برنج) ...................................................................................
فاز B و B' دارای سختی و مقاومت به سایش بالا می باشد و باعث افزایش استحکام و سختی آلیاژ می شود افزایش بیشتر روی در آلیاژ باعث تشکیل فاز گاما می شود Cu5Zn8 این فاز فوق العاده شکننده بوده و باعث ایجاد ترک و کاهش خواص مکانیکی در آلیاژ می شود وجود ناخالصی ها در برنج ها باعث تشکیل فاز های میانی Cu2ZnAl و Cu2ZnSn,Cu5ZnMg این فاز ها به شکل ناخالصی و آخال باعث کاهش خواص آلیاژ می شود .
نوع آلیاژ رنگ و مشخصات مس
Cu>98 رنگ و مشخصات مس
بین 98 تا 90 طلایی تیره زرد تیره
بین 85تا 80 رنگ سرخ مس
بین 65 تا 70 رنگ زرد – زرد روشن
کمتر از 60 رنگ زرد متمایل به سفید

آلیاژ مس قلع( برنز) ..................................................................................................
وجود قلع در مس باعث افزایش استحکام و خواص مکانیکی می شود حد حلالیت قلع در مس در فاز آلفا حدود 13.5 درصد است و در درجه محیط مقادیر بسیار کوچک و صفر می رسد
قلع در مس تشکیل فاز بین فلزی دلتا را می دهد Cu3Sn8 این فاز ، فاز سختی بوده و باعث افزایش سختی آلیاژ می شود عموما آلیاژ های مس قلع زیر 20 درصد قلع دارند و آلیاژ هایی که 5 تا 10 درصد قلع دارند دارای فاصله انجماد بسیار طولانی 200درجه و لذا انجماد خمیری دارند یکی از آلیاژ های برنز آلیاژ زنگ می باشد که دارای 20 تا 23 درصد قلع می باشد و سختی و شکنندگی زیاد دارد وجود سرب باعث افزایش خاصیت ماشین کاری می شود وجود آلومینیم در آلیاژ های مس قلع باعث افزایش سختی و شکنندگی این نوع آلیاژ ها می شود و همچنین وجود آهن در ترکیب شیمیایی این نوع آلیاژ ها به ریز شدن شبکه کریستالی کمک می کند .
آلیاژ های برنز در یاتاقان ها و نقاطی که میزان خوردگی بالا می باشد استفاده می شود مانند اسکله ها و کشتی ها همچنین درجه حرارت ریخته گری برنز 1070 تا 1150 درجه می باشد
(آلیاژ های مس نیکل ( ورشو......................................................................................
ورشو آلیاژی از مس و نیکل بوده این آلیاژ جلای فلزی بالایی دارد و عموما در ساخت صنایع و اشیاء هنری و صنایع غذایی استفاده می شود همچنین این آلیاژ به نقره آلمانی نیز معروف می باشد
آلیاژ مس – قلع روی بوده عموما 10 قلع و 20 درصد روی دارد این نوع آلیاژ مقاومت به خوردگی بالایی در آب دریا داشته لذا در صنایع دریایی از آن استفاده می شود .
آلیاژ مس سرب .:...................................................................................................
حلالیت سرب در مس پایین بوده که حلالیت 0.002 درصد می باشد وجود عناصر مانند قلع باعث افزایش حلالیت سرب در مس می شود حلالیت را تا 0.005 افزایش پیدا می کند سرب به دلیل وزن مخصوص بالایی که دارد تمایل به جدایی زیادی در آلیاژ دارد لذا در حین ریخته گری پایین عملیات مخلوط کردن و هم زدن انجام شود سرب در اکثر برنج ها و برنز ها تا حدود 2 درصد وجود دارد که بعلت افزایش قابلیت ماشین کاری و روغن کاری می شود اما د رآلیاژ های یاتاقان میزان سرب تا 50% افزایش پیدا می کند معروف ترین آلیاژ مس سرب آلیاژ 85 % مس 5% روی 5% سرب 5% قلع که آلیاژ معمولا برای ساخت قطعات هیدرولیکی استفاده می شود فوق ذوب در آلیاژ های مس سرب در حدود 150 درجه بوده که برای جلوگیری از رسوب در فاز مذاب می باشد .


دانلود گزارش کارآموزی واحد الفین پتروشیمی اراک

گزارش کارآموزی واحد الفین پتروشیمی اراک در 79 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 1489 کیلو بایت
تعداد صفحات فایل 79
گزارش کارآموزی واحد الفین پتروشیمی اراک

فروشنده فایل

کد کاربری 6017

گزارش کارآموزی واحد الفین پتروشیمی اراک در 79 صفحه ورد قابل ویرایش


(( فهرست مطالب ))

عنوان


صفحه

الف - پتروشیمی اراک در یک نگاه


4

- هدف


4

- سهامداران


4

- تاریخچه


5

- تولیدات مجتمع


5

- موقعیت مجتمع


5

- تاریخچه احداث


5

- اهمیت تولیدات مجتمع


6

- خوراک مجتمع


7

- نیروی انسانی


7

- مصارف تولیدات مجتمع


8

- واحدهای مجتمع


9

- واحدهای سرویس های جانبی


10

- دستاوردهای مجتمع


11

- حفظ محیط زیست


11

- اسکان و امکانات رفاهی


12

ب _ تجهیزات


14

- شیر (VALVE)


14

- ظروف یا مخازن (VESSELS)


17

- مبدل حرارتی (HEAT EXCHANGER)


18

- پمپ (PUMP)


20

- بخار آب STEAM))


25

- مولد بخار (STEAM GENERATION UNIT)


26

- برجها (TOWERS)


28

ج – آشنائی با قسمتهای مختلف واحد الفین و نحوة کارکرد و شرایط عملیاتی آن :


32

- مبنای طراحی


33

- شرح پروسس


39

- شرح کنترل واحد


45

- سرویسهای جانبی


47

- مقررات پیشگیری از حوادث


50

- مخازن محصول :


52











د – واحد هیدروژناسیون بنزین پیرولیزP.G.H :


55

جزئیات عملیات :


58

- راکتور هیدروژناسیون


61

عملیات جداسازی :


73

- برج 1001 ( DEPANTANIZER )


73

- برج 1003 (DEHEXANIZER)


80

- برج 1002 (DEHEPTANIZER)


82

- جداول


85




پتروشیمی اراک در یک نگاه

هدف:

ایجاد یک مجتمع پتروشیمی جهت تولید مواد پایه ای و میانی با استفاده از خوراک اصلی نفتا وتبدیل آنها به فراورده های نهایی پلیمری و شیمیایی.

سهامداران :

1- شرکت ملی صنایع پتروشیمی

2- شرکت سرمایه گذاری بانک ملی ایران

3- سازمان تامین اجتماعی

4- سازمان بازنشستگی کشوری

5- شرکت سرمایه گذاری تدبیر

6- سایر سهامداران

سرمایه نقدی شرکت : 600 میلیارد ریال

تاریخچه :

مجتمع پتروشیمی اراک جهت تولید مواد پایه‌ای و میانی با استفاده از خوراک اصلی نفتا و تبدیل آنها به فراورده‌های نهایی پلیمری و شیمیایی با سرمایه نقدی حدود 600 میلیارد ریال احداث گردید . سهامداران آن ، شرکت ملی صنایع پتروشیمی اراک و بانک ملی ایران که 49 % از سهام را در اختیار دارد می‌باشند.
تولیدات مجتمع :

در ظرفیت کامل تولیدات مجتمع بالغ بر 1108000 تن مواد پایه‌ای ، میانی و نهایی می‌باشد که نیاز بخش وسیعی از صنایع داخلی را تامین و مازاد فرآورده‌ها به خارج از کشور صادر می‌گردد.
موقعیت مجتمع :

مجتمع پتروشیمی اراک در جوار پالایشگاه اراک در کیلومتر 22 جاده اراک – بروجرد و در زمینی به وسعت 738 هکتار قرار گرفته است .
تاریخچه احداث :

این مجتمع یکی از طرح‌های زیربنایی و مهم می‌باشد که در راستای سیاست‌های کلی توسعه صنایع پتروشیمی و با هدف تامین نیاز داخلی کشور و صادرات فرآورده‌های مازاد ایجاد گردیده است . این طرح در سال 1363 بتصویب رسید و پس از طی مراحل طراحی و نصب و ساختمان در سال 1372 فاز اول مجتمع در مدار تولید قرار گرفت .

در ادامه کار واحدهای دیگر مجتمع تکمیل گردید و هر ساله با راه‌اندازی سایر واحدها ، شرکت بسوی بهبود مستمر و تولید بیشتر و متنوع‌تر پیش‌ میرود . در سال 1378 با بهره‌برداری از واحد اتانول آمین زنجیره تولیدات مجتمع تکمیل گردید .

از سال 1378 با تصویب هیئت مدیره و پس از بررسی‌های دقیق عملکرد مجتمع ، شرکت در بازار بورس پذیرفته شد و واگذاری سهام آن آغاز گردید .

اهمیت تولیدات مجتمع :

از مشخصه های استثنایی مجتمع پتروشیمی اراک استفاده از داننش های فنی وتکنولوژی و فرآیندهای پیشرفته میباشد . تولیدات مجتمع بسیار متنوع و عمدتا گریدهای مختلف را شامل میشود. از لحاظ انتخاب خطوط تولید کمتر مجتمعی را میتوان یافت که از مانند مجتمع پتروشیمی اراکترکیبی از تولیدات پلیمری و شیمیایی ارزشمند و حتی شاخه خاصی از تولیدات تولیدات نظیر سموم علف کش ها را یکجا داشته باشد. مجتمع پتروشبمی اراک از لحاظ تنوع , ارزش فرآورده ها و نقش حساس آن در تامین نیاز صنایع مهم کشور کم نظیر
می باشد.

خوراک مجتمع :

خوراک اصلی مجتمع نفتای سبک و سنگین است که از پالایشگاه اصفهان واراک از طریق خطوط لوله تامین می شود . خوراک دیگر مجتمع گاز طبیعی است که از خط لوله سراسری مجاور مجتمع اخذ می گردد . ضمنا حدود 6000 تن آمونیاک و حدود 153000 تن در سال اکسیژن در واحد جداسازی هوا در مجتمع تولید
می گردد.

نیروی انسانی :

کل نیروی انسانی شاغل در مجتمع بالغ بر 1847 نفر می باشد که حدود 1280 نفر فنی و 567 نفر ستادی میباشد . بر اساس سیاست کلی دولت جمهوری اسلامی ایران بخشی از کارها به بخش خصوصی واگذار گردید که در این راستا چندین شرکت شامل 1000 نفر نیرو در بخشهای خدماتی تعمیراتی وغیره در مجتمع فعالیت دارند.





مصارف تولیدات مجتمع :
مصارف تولیدات مجتمع بسیار متنوع ودارای طیف گسترده است . در بخش تولیدات شیمیایی کلیه فراورده ها شامل اکسید اتیلن / اتیلن گلایکلها – اسید استیک / وینیل استات – دو اتیل هگزانول و بوتانلها و اتانل آمینها به اضافه سموم علف کشها کاملا در کشور منحصر به فرد می باشد و نیاز صنایع

مهمی را در کشور تامین نموده و مازاد آنها به خارج صادر می شود .

در بخش پلیمری نیز فراورده های ارزشمند و استراتژیک انتخاب شده که بعنوان نمونه می توان گرید های مخصوص تولید سرنگ یک بار مصرف – کیسه سرم –بدنه باطری – گونی آرد – الیاف و همچنین ماده اولیه ساخت بشکه های بزرگ به روش دورانی و نیز گرید مخصوص تولید لوله های آب و فاضلاب و گاز و لاستیک P.B.R را می توان نام برد .

اولویت مصرف فرآورده های مجتمع برای تامین نیاز صنایع داخل کشور است . در ارتباط تولیدات مجتمع سهم بسزایی در تامین نیاز صنایع پایین دستی دارد به نحوی که نیاز بالغ بر 5000 واحد پایین دستی را تامین می کند.






« شرح پروسس »

به طور معمول نفتای سبک و سنگین از طریق دو خط مجزا از پالایشگاه مجاور دریافت می گردد. جریان نفتای سبک از طریق خط 10//-86-LG2 دریافت و توسط FQT-001 اندازه گیری ودر 8تانک سقف گنبدی به شماره های 86-TK-01A/H که ظرفیت هر کدام 3600 m3 می باشد ذخیره می گردد.

ظرفیت کل مخازن ذخیره سازی نفتای سبک طوری در نظر گرفته شده است که خوراک واحد الفین در حالت 100% رابه مدت 10 روز تأمین کند.

جریان برش C6 از واحد بوتن 1 دریافت شده وبا نفتای سبک دردرون مخازن مربوطه مخلوط می گردد تانکها طوری طراحی شده اند که فشار بخار نفتا رادر حداکثر دمای محیط بتوانند تحمل کنند به همین منظور هرمخزن به یک pressure Relief Valve مجهز گردیده که عمل تخلیه بخارات از طریق Collection header به Blow Down صورت می گیرد .فشار داخل مخازن در محدوده 0.2-0.4 bar نگهداری می شود. همچنین هر مخزن به یک شیر اطمینان مجهز شده است تادر مقابل افزایش فشار محافظت شود که این شیر اطمینان در هنگام عمل به اتمسفر باز می شود.

در فصل سرما نفتای انباشته شده در مخازن ممکن است تا دمای خیلی پایین سردشوند (حداقل دمای طراحی شده -16oc) فشار بخار نفتای سبک در دمای پائین کمتر از فشار اتمسفر می شودوبه منظور جلوگیری از ایجاد خلاء درون تانکها هر مخزن به یک شیر کنترل فشار محهز شده است که هر وقت فشار درون هر مخزن به کمتر از فشار تنظیمی شیر کنترل فشار برسد از طریق همین شیر کنترل ، نیتروژن به درون مخزن تزریق می شود . اگر چنانچه اشکالی یا نقصی در این شیر بوجودآید وعمل نکند یک Breathing Valve روی هر مخزن نصب شده است که با تزریق هوا به داخل مخزن از ایجاد خلاء جلوگیری می کند هر مخزن به نشان دهنده های سطح مایع که به صورت محلی ونیز در اطاق کنترل نصب شده اند و همچنین به سیستم اخطار سطح پایین مایع و سیستم اخطار سطح بالای مایع مجهز می باشد علاوه براین یک Very high Level Swich در نظر گرفته شده که برای بستن Solenoid Valve که روی خط تغذیه 10//-86-LG3 نصب شده است بکار می رود همچنین یک Very Lowe Level Swich در مواقعی که سطح مایع خیلی پایین است پمپ انتقال 86-p-00-01 را از سرویس خارج می کند تاپمپ در مقابل کاویتاسیون محافظت شود هر مخزن به نشاندهنده های فشار ودمای محلی و نشانده هایی ککه در اطاق کنترل نصب شده اند ونیز به سیستم اخطار فشار بالا وپایین مجهز می باشد جریان نفتای سنگین از طریق خط

8//-86-HG2 دریافت و توسط FQT-004 اندازه گیری می شود. ودر دو مخزن سقف شناور 86-TK-02 A/B که ظرفیت هر کدام 1100m3 می باشد ذخیره می گردد ظرفیت کل مخازن ذخیره سازی نفتای سنگین طوری در نظرگرفته شده است که خوراک واحدالفین رادر حالت 100% کارکرد به مدت10 روز تأمین کندهر دومخزن نفتای سنگین به نشاندهنده های سطح و سیستم اخطار بالا یا پایین بودن سطح مایع مجهز شده اند علاوه براین برای جلوگیری از خطر لبریز شدن نفتای سنگین یک Very high Level Swich در نظر گرفته شده است که باعث بسته شدن Solenoid Valve می شود دمای نفتای درون مخازن توسط دستگاههای نشاندهنده در اتاق کنترل ودر محل نشان داده می شود. نفتای سبک از طریق 12//-86-LG 22 توسط پمپهای انتقال 86-P-00-01 A / B که از نوع پمپهای عمودی سانتری فوژ هستند مکیده شده واز طریق خط 6//-86-LG 23 به واحد الفین فرستاده می شود.

خطوط تخلیه هردو پمپ بوسیله خط 2//- 86 – LG 34 به مخازن متصل
می شوند و همچنین خطوط برگشتی (Recycle) هردو پمپ که مجهزبه
فلو اریفیسهای fo-031 /032می باشند توسط خط 4//-86-LG 24 به مخازن متصل می شوند از دو خط ذکر شده هنگام راه اندازی پمپ برای تخلیه بخارات و برالی رسیدن فشار پمپ به فشار عملیاتی نرمال استفاده می شود پمپها در مقابل کاهش زیاد جریان می بایست محافظت شوند به همین منظور اگر مقدار دریافت نفتای سبک توسط واحد الفین از واحد مخازن به کمتر از حداقل ظرفیت پمپهای ارسالی نفتای سبک برسد کنترل کننده FIC-002 با بازکردن کنترل ولو FV-002 مازاد نفتای سبک مورد نیاز الفین رااز طریق خط برگشتی به مخازن برمی گرداند (منظور از حداقل ظرفیت پمپ 30% ظرفیت طراحی شده برای پمپ می باشد) نفتای سنگین از طریق خط 3// -86 –HG 9 توسط پمپهای 86-P-00-02 A/ B که از نوع پمپهای سانتری فوژی افقی می باشند مکیده شده واز طرق خط 3// -86 –HG 18 به Daily Tank واز طریق خط 3// -86 –HG 10 به واحد الفین منتقل می شود .همچنین این پمپها مانند پمپهای ارسال نفتای سبک می بایست از کاهش زیاد Flow محافظت شوند به همین منظور اگر مقدار مورد نیاز نفتای سنگین برای واحد الفین کاهش یابد کنترل کننده جریان FIC-003 از طریق خط برگشتی نفتای سنگین مازادرا به مخازن برمی گرداند در شرایط نرمال برای هر دونوع خط برگشتی نفتای سنگین مازادرا به مخازن برمی گرداند در شرایط نرمال برای هردو نوع نفتا یکی از مخازن در حال خالی شدن وهم زمان یکی دیگر در حال پرشد ن می باشد و بقیه مخازن نفتای سبک در ظرفیت کاملاً پر نگه داشته می شوند.

در حالتی که نفتا از پالایشگاه مجاور مجتمع قابل استفاده نباشد می بایست همان مقدار نفتای مورد نیاز مجتمع را از پالایشگاههای دیگر وارد کنیم به همین منظور برای دریافت نفتا از پالایشگاههای دیگر سیستم un Loding پیش بینی شده است که در این سیستم نفتا از تانکرهای جاده ای تخلیه وبه مخازن مربوطه ارسال می گردد. این سیستم شامل چهار پمپ 86-p-00-03 A /D است که ظرفیت هریک از این پمپها 60 m3/hour می باشد (معمولاً سه پمپ در سرویس و یک پمپ یدکی است) هر کدام از این پمپها مجهز به یک خط

(Suction Line) است وهر خط مکش به دو اتصال دهنده موقت که هر یک به راحتی وبه سرعت به یک تانکر جاده ای متصل می شوند مجهز می باشد به این طریق هنگامی که یک تانکر درحال خالی شدن می باشد تانکر دوم (که قبلاً به وسیله اتصال دهنده های وقت به خط مکش متصل شده است ) آماده تخلیه
می باشد حداقل زمان مجاز برای در سرویس قرارگرفتن هر پمپ 45 دقیقه درهر ساعت می باشد که مقدار دبی (Flow rate) متوسط هر پمپ برابراست با :

که در این حالت دبی کل برای سه پمپ می باشد. وچهارمین پمپ در حالت یدک (spare) قراردارد به دلایل ایمنی فشار بخار نفتای سبک واردشده به وسیله تانکرها بایستی کمتر از 0.5 bar باشد برای رعایت ایمنی سیستم یک panel محلی برای سیستم در نظر گرفته شده است که تا اتصال زمین برقرار نشود از panel نمی توان استفاده کرد واین موضوع باعث رعایت اجباری موارد ایمنی خواهد شد.

برای اینکه پمپها هنگام تخلیه تانکرها درمقابل کاویتاسیون محافظت شوند برای سیستم Lowe Flow Swich در نظر گرفته شده است. که بعد از خالی شدن تانکرپمپ را از سرویس خارج می کند. در سیستم تخلیه نفتا ، نفتای تخلیه شده ممکن است همزمان به دو مخزن ذخیره سازی نفتای سبک و سنگین فرستاده شود نفتای سبک از طریق خطهای :

10//-86-LG 1 و 10//-86-HG 2 وپس از اندازه گیری بوسیله FQT-004 به مخازن مربوطه فرستاده می شود.


دانلود گزارش کارآموزی سیستم تلویزون

گزارش کارآموزی سیستم تلویزون در 35 صفحه ورد 38 اسلاید قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 5774 کیلو بایت
تعداد صفحات فایل 35
گزارش کارآموزی سیستم تلویزون

فروشنده فایل

کد کاربری 6017

گزارش کارآموزی سیستم تلویزون در 35 صفحه ورد + 38 اسلاید قابل ویرایش


بسمه تعالی

در اجرای اصل یکصدوهفتادوپنجم قانون اساسی جمهوری اسلامی ایران که به رادیو و تلویزیون اشاره دارد و همچمنین قانون اداره صداو سیمای جمهوری اسلامی ایران مصوب هشتم دیماه 1359 مجلس شورای اسلامی اساسنامه صداوسیمای جمهوری اسلامی ایران که بشرح زیر می باشد : سازمان صدا و سیمای جمهوری اسلامی ایران سازمانی است مستقل و زیرنظر قوای سه گانه کشور که بر طبق قانون اداری صدا و سیمای جمهوری اسلامی ، قانون خط مشی و مفاد این اساسنامه اداره می شود .

اهداف : هدف اصلی سازمان صدا و سیما بعنوان یک دانشگاه عمومی ، نشر فرهنگ اسلامی ، ایجاد محیط مساعد برای تزکیه و تعلیم انسان و رشد فضائل اخلاقی و شتاب بخشیدن به حرکت تکامل انقلاب اسلامی در سراسر جهان می باشد . این اهداف در چهارچوب برنامه های ارشادی ، آموزشی ، خبری و تفریحی تامین می گردد . ریاست سازمان صداو سیما جهت وظایف خود دارای 6 حوزه معاونت می باشد که عبارتند از :

1- معاونت امور برنامه ها که مسئوولیت تهیه کلیه طرحها و برنامه های رادیویی و تلویزیونی و ارائه آن به واحد طرح و برنامه و نیز تولید و پخش آن را بر عهده دارد .

2- معاونت سیاسی که مسئوولیت تهیه ، تنظیم و پخش اخبار و گزارشها را بر عهده دارد .

3- معاونت آموزشی که مسئوولیت تربیت نیروی انسانی مورد نیاز سازمان را از طریق دانشکده صدا وسیما بر عهده دارد .

4- معاونت فنی که مسئولیت انجام کلیه امور مربوط به تجهیزات فنی سازمان شامل تهیه و تامین وسائل و دستگاههای فنی، نگهداری و تعمیرات ، گسترش پوشش رادیویی و تلویزیونی در داخل کشور را بر عهده دارد .

5- معاونت اداری مالی که مسئولیت تنظیم و اجرای بودجه تامین نیروی انسانی ، امور اداری و حقوقی را بر عهده دارد .

6- معاونت برون مرزی که مسئوولیت تهیه طرح های رادیویی و تلویزیونی برون مرزی را بر عهده دارد .

معاونت فنی سازمان صدا و سیما خود دارای حوزه های زیر می باشد :

1- اداره کل پشتیبانی فنی

2- اداره کل فرستنده های تلویزیونی

3- اداره کل فرستنده های رادیویی

4- اداره کل تاسیسات

واحد پشتیبانی فنی سازمان صداوسیمای اراک زیر نظر اداره کل پشتیبانی فنی سازمان صداوسیما قرار دارد وکارآموزی اینجانب در آنجا انجام شد .

این واحد دارای وظایفی به شرح زیر می باشد :

1- تعمیرات و نگهداری کلیه تجهیزات استودیویی و پرتابل الکترونیک رادیویی و تلویزیونی .

2- ارائه خدمات الکترونیک جهت ضبط و پخش برنامه های رادیویی و تلویزیونی .

3- فراهم آوردن امکان ارتباط مستقیم تلویزیونی و رادیویی از اراک به سایر نقاط کشور .

4- استفاده از تجهیزات و تکنولوژی های جدید برای انجام امورات فوق .

در طول دوره سه مبحث مورد بررسی واقع شد :

1- نمونه برداری ازسیگنال تصویر

2-کوانتایی سازی سیگنال تصویر

3- اصول فشرده سازی تصویر






فصل اول نمونه برداری از سیگنال تصویر

ضبط اطلاعات تصویری:

دستگاه ضبط مغناطیسی تصویر در واقع از اطلاعات تصویری یک کپی برروی نوار مغناطیسی می کشد. لذا می توان آن را مشابه باحالتی فرض کرد که نقاشی بخواهد ازیک تابلوی اصلی نسخه برداری کند. بنابراین هرقدر در صحت کشیدن دقت بیشتری داشته باشد. تابلوی کپی شباهت بیشتری به اصل خواهد داشت. اما اگر دراین نقاشی از تکنیکهای ضعیف، دستهای لرزان، قلم موهای نامناسب وسنگین اشتفاده شود کپی تهیه شده همراه با خطاهای زیاد بوده و در جزئیات ، باکار اصلی متفاوت خواهد بود. در دستگاههای ضبط تصویر قیاسی هنگامی که از تصویر اصلی برروی نوار مغناطیسی نسخه برداری های مکرر انجام می شود، عدم کیفیت مطلوب تصویری رابه دنبال خواهد داشت. همانطور که بهترین هنرمند هاهم نمی توانند چنین ادعایی داشته باشند. مضافا این که بخواهیم دوباره کپی دیگری از کپی اولی تهیه کنیم. واضح است که تفاوتها بازهم بیشتر خواهند شد وکاهش فوق العاده کیفیت تصویری رادرپی خواهند داشت.

ضبط رقمی اطلاعات تصویری:در ضیط تصویر رقمی، سیگنال تصویر پیوسته متناوبا در زمانهای معینی اندازه گیری می شود. هریک از این نقاط اندازه گیری شده که در طول عمل نمونه برداری بدست می ایند، توسط یک عدد بیان می شوند. حال، این مقدار عددبیان شده است که روی نوار ضبط می شود نه خود سیگنال تصویری. می توان تصور کرد بجای این که از روی یک اثر هنری رنگارنگ با جزئیات فراوان نقاشی کشیده شود، از روی تعدادی عددکپی برداری گردد. بخصوص آن که جزئیات تصویری به ارزش عددی هر عدد بستگی داشته باشد ونه به خوش خط یابد خط نوشتن اعداد. از آنجا که در فن آوری رقمی هرعدد به صورت دودویی بیان می شود، باکمی دقت می توان اعداد صفر ویک رااز هم تشخیص داد. دراین صورت کپی کاملا شبیه اصل و عملیات کپی برداری بدون افت کیفی خواهد بود.

اصول نمونه برداری تصویر:

نمونه برداری عبارت از اندازه گیری متناوب مقادیر سیگنال تصویر قیاسی به جهت تولید نمونه های تصویری می باشد. تمام سیستمهای فیلم وتصاویر الکترونیکی از نمونه برداری به مقدار وسیع استفاده می کنند. وضوح فاصله ای در فیلم توسط عناصر رنگی حساسی به نور تعداد نمونه های تصویر محدود می شود، در صورتی که وضوح گذری توسط سرعت فریم وزاویه نوربند محدود می شود. سیگنال تصویر قیاسی اغلب به صورت عمودی نمونه برداری می شود واین عمل به خاطر روش پویش سیگنال می باشد. در سیستم تلویزیون ، تصویر از تعدادی خطوط افقی تشکیل می شود. تعداد این خطوط در سیستم 50 هرتز 625 خط ودر سیستم 60هرتز 525 خط می شاد. در روش پویش خطوط افقی تصویر، وضوح ایستا ووضوح پویا به وسیله چندین عامل تعریف شده اند:

الف- وضوح افقی توسط پاسخ فرکانسی وسرعت فریم مجدود می گردد.

ب- وضوح عمودی توسط بسامد نمونه برداری ونسبت تعداد خطوط یک میدان ویا یک فریم وهمچنین توسط سرعت فریم ها محدود می شود.

برای رقمی سازی یک تصویر باید سیگنال تصویری حاصل از پویش لامپ دوربین یا حسگرهای دسته بندی شده رادریک خط یادریک فریم نمونه برداری نماییم. هردودسته حسگرهای خطی وفرعی، تصویر رادر سه بعد نمونه برداری می کنند. این سه بعد عبارتند از: افقی ، عمودی وحوزه زمان. وضوح ایستا وووضوح پویا دریک تصویر رقمی شده ره بسامد نمونه برداری وسطوح کوانتش مربوط به هر نمونه بستگی کامل دارد. سیگنال تصویر قیاسی ازدونظر پیوسته می باشد: پیوستگی در حوزه زمان – پیوستگی از نظر مقدار واندازه . اما سیگنال رقمی از نظر زمان ومقدار گسسته می باشد. علاوه برآن از نظر زمان فقط در زمانهای معینی تعریف شده است واز نظر مقدار فقط می تواند اندازه های کاملا مشخصی را دارا باشد. یک سیگنال تصویر رقمی ازیک سری اعداد دودویی دنبال هم تشکیل شده که هر یک ازاین اعداد نماینده یک نمونه اندازه گیری شده مشخصی می باشند. مقدار هرکدام ازاین اعداد، ترکیبی از بیتهای صفر ویک هستند. شکل بیت خلاصه شده رقم دودویی نام دارد. برای تبدیل یک سیگنال پیوسته زمانی به سیگنال گسسته, می بایست در زمانهای مشخصی از آن نمونه گرفت که در نتیجه سیگنال پیوسته زمانی به صورت گسسسته ومنقطع درمی آید. حال اگر این نمونه های زمانی به تعداد کافی موجود باشند سیگنال مقطع اطلاعاتی رااز دست نخواهد داد. شکل 1 نشان دهنده یک نمونه ایجاد وذخیره اطلاعات تصویر رقمی تک رنگ می باشد این نمونه شامل یکسرس نقاط مرتبی می شود که عموما مستطیل شکل هستند. مقدار روشنایی در آن نقاط به عنوان یک عدد ذخیره می گردد. نقاط مذکور به عنوان عناصر تصویری هستند که عموما آنها راپیکسل می گویند. ترتیب چیدن عناصر تصویری به وصرت ستونی وردیفی است. باکم کردن فاصله بین عناصر تصویری می توان امیدوار بود که ببیننده تصویری پیوسته را مشاهده کند. مسلما با بهبود ابعاد عناصر تصویر مقدار وضوح تصویری بهتر خواهد شد. دراین صورت مقدار داده های رقمی لازم برای ذخیره یک تصویر، به نسبت مربع توان دوم وضوح تصویری افزایش می یابد. هر عنصر تصویری حتی در تصاویر رنگی اضافه برمیزان روشنایی مقدار دیگری ندارد، اماهر نقطه از تصویر شامل برداری است که میزان روشنایی ورنگ مایه ودرجه اشباع رنگ را تشکیل می دهد. دراین صورت مقدار داده ها با همه دشواریها افزایش می یابد. شکل1 نشان می دهد که تصاویر می توانند به صورت رقمی وتوسط نسبت دادن میزان روشنایی هرنقطه به صورت عددی دودویی ذخیره گردند. نمونه برداری اغلب به صورت ردیفی و ستونی می باشد. در این صورت چنانچه خطوط عمودی وافقی همانند هم وبه یک فاصله باشند بیشترین بازدهی تصویری را خواهیم داشت.





فصل دوم :کوانتایی سازی سیگنال تصویر

برای ضیط سیگنال تصویر به صورت رقمی، نخست باید سیگنال قیاسی به رقمی تبدیل گردد. در فصل قبل توسط عمل نمونه برداری، سیگنال قیاسی به نمونه های تصویری تبدیل شد. حال لازم است که برروی این نمونه های تصویری عمل کوانتایی سازی انجام گیرد. در طی این عمل، دامنه هریک از نمونه ها با سطوح ولتاژ مشخصی به تقریب زده می شوند.هریک ازاین سطوح ولتاژ توسط یک عدد دودویی بیان می گردد. ازاین مرحله به بعد هرنوع پردازشی که سیگنال تصویر لازم دارد، برروی این اعداد دودویی صورت می گیرد. از آنجائی که تعداد سطوح کوانتش رابطه ای مستقیم با کیفیت تصویر دارد، محاسبه تعداد سطوح بسیار مهم می باشد. هرچه تعداد سطوح کوانتش بیشتر وفاصله سطوح از یکدیگر کمتر باشد. عمل تقریب زدن دامنه نمونه های تصویر، دقیقتر خواهد بود. این بدان معنی است که خطای کوانتش کمتر شده وعمل کوانتائی سازی بادقت بیشتر انجام می شود. امااز طرف دیگر، تعداد سطوح بیشتر به معنی نیاز به تعداد بیت زیادتر است.هرچه تعداد بیتها افزوده شود، نرخ داده های تصویر هم بیشتر می شود. ماهمواره به دنبال آن هستیم تاضمن داشتن کیفیت تصویر خوب، نرخ بیت راکاهش دهیم. دراین فصل ابتدا برروی اصول کوانتایی سازی، کوانتش یکنواخت وغیریکنواخت مطالعه می شود. سپس سطوح کوانتش وتعداد بیتهای لازم رامورد توجه قرار می دهیم و رابطه ای بین کیفیت تصویر وتعداد بیتها بدست می آوریم. توسط این رابطه وبادر نظر گرفتن مقدار سیگنال به نویز تصویر، تعداد بیتهای لازم را محاسبه می نمائیم. در پایان این فصل با مقدار بدست آمده برای تعداد بیتهای لازم، به محاسبه نرخ داده های تصویر در کانال تلویزیونی می پردازیم.


دانلود گزارش کارآموزی کشف نفت در منطقه غرب

گزارش کارآموزی کشف نفت در منطقه غرب در 115 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 135 کیلو بایت
تعداد صفحات فایل 115
گزارش کارآموزی کشف نفت در منطقه غرب

فروشنده فایل

کد کاربری 6017

گزارش کارآموزی کشف نفت در منطقه غرب در 115 صفحه ورد قابل ویرایش


فهرست مطالب

عنوان صفحه

مقدمه 1

تاریخچه 2

کشف نفت درمنطقه غرب 4

تاسیس پالایشگاه کرمانشاه 4

آشنایی باواحدهای مختلفutility 7

شرح کاردستگاه api 8

آب صنعتی 11

واحد تولید برق 16

کمپروسورهای تولید هوا 17

تولیدات پالایشگاه 22

واحدهای تقطیر 25

محصولات پالایشگاه 52

بنزین موتور 53

MTBE 54

عدد اکتان 57

نفت سفید 59

نفت گاز 60

نفت کوره 61

آشنایی باواحدهای مختلف آزمایشگاه 62

مفاهیم واختصارات 65

انواع وچگونگی انجام آزمایشات 68

آزمایشات انجام شده درآزمایشگاه 71

فهرست مطالب

عنوان صفحه




تعین مقدار TDS 82

تعین درجه خلوص کاستیک سودا 89

اندازه گیری نمک درنفت خام 96

نقطه ریزش 99

اندازه گیری نقطه اشتعال 102

اندازه گیری رنگ مواد نفتی 104

اندازه گیری کل سختی 107

اندازه گیری PHENOL 109

آزمایش کلرین 114

تقطیر 115




مقدمه



عظمت صنایع نفت که زمانی کوتاه در صف بزرگ ترین صنایع سنگین جهان قرار گرفته است ، مدیون تکنولوژی پیشرفته ی آن است که تمام قدرت علمی و دانش بشری قرن بیستم را به خدمت گمارده است . خصوصیات واحدهای پالایش نفت را شاید بتوان در پیچیدگی ماده ی اولیه آن به لحاظ شیمیایی و حجم زیاد ماده ی اولیه از نظر فیزیکی خلاصه کرد . همین خصوصیات تکنولوژی خاصی را برای صنایع پالایش نفت به وجود آورده که آن را از تکنولوژی عمومی صنایع شیمایی متمایز می سازد .

در حال حاضر مشکل می توان قسمت هایی از زندگی انسانی را نام برد که مشتقات نفت در آن مستقیم یا غیر مستقیم نقشی نداشته باشد . نیروی محرکه ی ماشین ها و موتور های دیزل به وسیله ی بنزین و نفت گاز تأمین می شود . کلیه قسمت های متحرک موتورها از روغن های نفتی استفاده می کنند . در داروسازی کاربرد فراوده های نفتی هر روز زیادتر می شود و بالاخره صنایع عظیم پتروشیمی از گازها و سایر فراورده های نفتی مایه می گیرد .

سال 1859 به عنوان سال تولد صنعت نفت ذکر شد ، لیکن تاریخ استفاده از فراورده های نفتی به شکلی که در طبیعت وجود دارد و به شکل محدود آن خیلی قدیمی تر است .استفاده از نفت به قدیمی ترین تمدن های بشری در کشورهایی که نفت و قیر در سطح زمین پیدا می شده ،بر می گردد.

ثابت شده که در چین در حدود 200 سال قبل از میلاد مسیح برای استخراج آن تا اعماق قابل ملاحظه و با روش ضربه ای که هنوز نیز مورد استفاده است حفاری کرده اند . ولی با وجود این آشنایی بشر به نفت و موارد کاربرد آن علت عقب ماندگی این صنعت را معلول به عواملی چند دانسته اند که مهمترین را باید در نقص دستگاه های تقطیر دانست ، زیرا در اواخر قرن 18 بود که دستگاه های تقطیر به سبب پیشرفت تنوری های جدید حرارتی تکمیل شد و در مقیاس صنعتی مورد استفاده قرار گرفت .

نکته ی دیگر آنکه پیشرفت صنعت نفت و تولید زیاد مواد نفتی محتاج مصرف و در نتیجه تفاضای زیاد برای فرآورده های نفتی بود . ابتدا در مناطق نفت خیز تنها فراورده ی مورد استفاده که به مقیاس تجاری تولید شده نفت چراغ بود ، که جای روغن های نباتی حیوانی را که قبلاً‌ برای روشنایی استفاده می شد ،گرفت ( برش نفت چراغ به طور متوسط فقط در حدود 10% از کل نفت خام را تشکیل می دهد ) . قسمت بنزین و باقی مانده ی تقطیر یعنی سوخت موتور ها و سوخت های مایع که حال ، یکی از مهمترین و با ارزش ترین فرآورده های نفتی است ، هیچ گونه ارزشی نداشت

فرآورده های دیگر نفتی مانند بنزین ، نفت گاز ، روغن ها و موم ها ، سوخت های مایع و مواد آسفالتی کم کم در طول سال ها مورد استفاده پیدا کرد . لیکن صنعت نفت مدت های مدیدی هنوز شکل ابتدایی داشت . افزایش ناگهانی مصرف بنزین به عنوان سوخت موتورها ی درون سوز ، پیشرفت های فنی زیادی را ایجاب کرد تا تولید بتواند جواب گوی تقاضا و مصرف باشد . به این ترتیب می توان گفت که افزایش زیاد ماشین های سواری محرک اصلی پیشرفت سریع صنعت نفت در قرن ماست .



























تاریخچه



یک ربع قرن پس از تأسیس پالایشگاه آبادان دومین پالایشگاه کشور در سال 1314 در مجاورت شهر تاریخی کرمانشاه تأسیس گردید . علت اصلی انتخاب کرمانشاه ، کشف ذخایر نفت در منطقه مرزی « نفت شاه سابق » به شمار می آمد ، اما این ذخایر بسیار قلیل بود و هیچ گاه قابل مقایسه با ذخایر جنوب غربی نبود وچنانچه منطقه ی غرب از ذخایر نفت قابل ملاحضه برخوردار می بود ، چه بسا که کرمانشاه به جای آبادان پایتخت نفت ایران می شد . لازم به تذکر است که کاشف نفت ایران « ژرژ برنارد رینولز »‌نخست کار اکتشافی خود را در منطقه غرب و در نزدیکی شهر مرزی قصر شیرین آغاز نمود .



تاریخ اکتشاف اولیه ی نفت در غرب کشور



در محافل علمی اروپا ، موضوع نفت در غرب ایران نخستین بار توسط باستان شناس فرانسوی ، ژاک دمورگان مطرح گردید . او در طی اکتشاف خود در دهه ی 1270 در غرب ایران به نشتی های نفتی در محل چیاه سرخ در مجاورت کوه بوزینان برخورد نمود ومشاهدات خود را در گزارشی عیناً‌ منعکس کرد . رینولز در بدو ورود به ایران در اواخر سال 1281 اولین چاه اکتشافی خود را در محل چیاه سرخ به زمین زد که چاه اولیه خشک بود . سپس در سال 1282 به زدن چاه دوم مبادرت ورزید و این بار در عمق 330 متری به لایه ی نفتی رسید . تولید اولیه این چاه بالغ بر 120 بشکه در روز بود ، اما به مرور زمان تولید این چاه روبه تنزل گذاشت و در اولین تابستان 1283 هنگامی که تولید این چاه به 20 بشکه در روز رسیده بود . وی دستور بستن چاه را داد و تصمیم گرفت به جنوب غرب کشور و کوهپایه هی زاگرس عزیمت نماید . او بالاخره در مسجد سلیمان موفق گردید به نفت خام بصورت تجاری دست یابد .





کشف نفت در منطقه ی غرب



پس از کشف تاریخی رینولز در مسجد سلیمان ، منطقه ی غرب کشور کاملاً‌به فراموشی سپرده شد و تنها از پایان جنگ جهانی اول بود که مجدداً‌ این منطقه نیز شامل برنامه های اکتشافی شرکت نفت ایران و انگلیس قرار گرفت .متخصصین این شرکت در چارچوب شرکت اکتشافی فرعی موسوم به شرکت اکتشافی مارسی روانه ی منطقه ی غرب کشور شدند و در سال 1302 اولین کشف خود را در منطقه ی نفت خیز عراق به ثبت رساندند . در سال 1306 در منطقه ی نفت شاه ایران نیز موفق به کشف نفت شدند .

در بخش ایران پیشرفت اکتشافات بسیار کند بود و کار اجرایی در نفت شهر تنها پس از قرارداد 29 آوریل 1933 (سال 1312 ) بین دولت وقت ایران و شرکت نفت ایران و انگلیس رونق گرفت . ماده ی نهم آن قرارداد با شرکت مذکور ، این شرکت را مؤظف به توسعه ی میدان نفت شاه نموده بود ، بنابراین فوراً‌ تدارکات لازم به وسیله یک شرکت فرعی برای استخراج و تصفیه نفت ایالت کرمانشاه آغاز شد .



تاًسیس پالایشگاه کرمانشاه



پیرو قرارداد سال 1312 ، در سال 1313 یک شرکت فرعی به نام شرکت نفت کرمانشاه با سرمایه ی اولیه بالغ بر 750 هزار لیره استرلینگ توسط شرکت نفت ایران و انگلیس تأسیس گردید و بلافاصله شروع به فعالیت نمود .

پالایشگاه کرمانشاه در فاصله ی هفت کلیومتری از شهر تاریخی کرمانشاه و در محلی مشرف بر رودخانه قره سو ساخته شد . ( البته به علت توسعه ی شهر ، این پالایشگاه در حال حاضر تقریباً‌در میانه ی شهر واقع شده است .)

خوراک این پالایشگاه ، از طریق خطوط لوله ای به قطر 3 اینچ و به طول 237 کیلومتر از چاه های نفت شهر تأمین می شد که یک سال پیش از آن احداث شده بود . البته هم اکنون خوراک مصرفی پالایشگاه کرمانشاه از سه شهر نفت شهر ، قصر شیرین و اهواز تأمین می شود که از کل ظرفیت پالایشگاه که حدود 25 هزار بشکه در روز است ، حدود 13 هزار بشکه از اهواز آورده می شود و 9-7 هزار بشکه از نفت شهر وارد می شود که کم وزیاد شدن این مقدار را خطوط لوله کنترل می کند .

ابتدا واحد های تولیدی پالایشگاه کرمانشاه بسیار ساده و شامل یک برج تقطیر در جو و دو واحد تصفیه ی بنزین موتور و تصفیه ی نفت سفید بود . خدمات رفاهی این پالایشگاه نیز بسیار محدود و قلیل بود .

در اواسط دهه ی 1340 طرح توسعه ی پالایشگاه کرمانشاه در شرکت ملی نفت ایران مطرح گردید . از یک سو تأسیسات موجود حدود 30 سال قدمت داشت و از سوی دیگر با رشد جمعیت ، تصفیه حدود 4500 تا 5000 بشکه در روز حتی مصرف غرب کشور را دیگر تأمین نمی کرد .

پس از انجام بررسی های مقدماتی ، طرح توسعه ی این پالایشگاه مورد تصویب شرکت ملی نفت ایران قرار گرفت و مقررشد که پالایشگاه جدیدی با ظرفیت 15000 بشکه در روز ( حداکثر ظرفیت ممکن با توجه به محدومیت تولید نفت خام از هشت چاه نفت شهر ) احداث شود . متعاقب این تصمیم اساسی ، شرکت ملی نفت ایران در سال 1347 ، شرکت آمریکایی J.O.P را به عنوان طرح پالایشگاه جدید و شرکت هلندی کانتینال را برای کارهای مهندسی و ساختمان آن انتخاب کرد .

در تابستان سال 1350 ، برج تقطیر قدیمی تعطیل شد و چند ماه بعد کل پالایشگاه قدیمی برای همیشه ازکار ایستاد و از تاریخ 27 اردیبهشت سال 1351 پالایشگاه جدید رسماً‌ افتتاح شد و آغاز به کار کرد . در طی سال اول بهره برداری این پالایشگاه موفق شد روزانه 14750 بشکه نفت خام را تقطیر نماید .



دوران جنگ تحمیلی



در اوایل مهر ماه 1359 به علت اشغال منطقه ی نفت شهر توسط عراق ، فعالیت های تولیدی پالایشگاه کرمانشاه به علت نداشتن خوراک به کلی متوقف گردید. جهت راه اندازی مجدد پالایشگاه لازم بود خوراک جدیدی از منبع دیگری تأمین شود و برنامه ریزان شرکت ملی نفت ایران ، پس از انجام بررسی های لازم با این نتیجه رسیدند که بهترین را حل برای تأمین خوراک جدیدپالایشگاه ، کشیدن خطوط لوله ی فرعی به طول 172 کیلومتر از خط اصلی اهواز – ری در نقطه ای به نام افرینه به طرف پالایشگاه است . این خط لوله 16 اینچ ظرف مدت کمتر از سه سال با موفقیت احداث گردید .به طوری که در آبان ماه سال 1362 پالایشگاه با نفت خام اهواز بار دیگر فعال گشت و از فرآورده های حاصله جهت تأمین نیاز نیروهای مصلح در جبهه های غرب کشور استفاده شد.

آب صنعتی



همان طور که می دانیم در یک پالایشگاه ، آبی که جهت بخار ، خنک کردن دستگاه ها وسایر موارد تولید می شود ، باید دارای شرایط خاصی باشد . وظیفه ی واحد آب صنعتی را می توان تهیه ی آب مورد نیاز برای واحد بخار ، تهیه ی آب مورد نیاز ظرف نمک گیر (Desalter) و نیز تهیه ی آب مورد نیاز جهت خنک کردن دستگاه های واحد پالایش و در انتها فراهم نمودن آب جهت مصارف آشامیدن بیان نمود .

حال به طور اجمالی به شرح عملیات واحد آب صنعتی می پردازیم :

خوراک ورودی این واحد در فصول پر آب سال که رودخانه دارای آب فراوان باشد از آب رودخانه تأمین می گردد و در مواقعی که آب رودخانه جواب گوی نیاز این واحد نباشد ، از آب چاه استفاده می گردد . سختی آب رودخانه به طور معمول در حدود PPM 300 و این میزان برای آب چاه به دلیل وجود املاح معدنی بیشتر در حدوPPM 600 می باشد .

آب در ابتدای ورود به این واحد وارد یک مخزن می شود . این مخزن که شماره ی 1 نام دارد دارای یک سری دیواره می باشد که در مسیر جریان آب قرار می گیرند . این دیواره ها دو خاصیت مهم دارند، اول این که جریان آب پس از برخورد با این دیواره ها ، تلاطم خود را از دست می دهد و آرا م می شود و مواد معلق در آب توسط این عمل سریع تر ته نشین می گردند ، دوم این که مسیر عبور آب طولانی تر می شود و این خاصیت نیز به ته نشینی بیشتر ذرات معلق کمک می کند .

در ابتدای ورود آب به این مخزن ، به میزان لازم به آن زاج یا Al2(So4) تزریق می کنند ، علت این کار را می توان چنین بیان نمود که : ذراتی که در آب وجود دارند و باعث سختی آن می گردند دارای جزیی بار منفی هستند . وجود زاج باعث می شود که محیط حدودی خاصیت قطبی پیدا کند ، در این چنین محیطی ذرات بیشتر به هم نزدیک می شوند و ذرات درشت تر ی را تولید می کنند و مشخصاً ذرات درشت تر ، سریع تر ته نشین خواهند شد .

پس از عبور آب از مخزن شماره 1 ، وارد مخزن شماره 2 می شود . ساختمان این مخزن نیزکاملاً‌شبیه به مخزن شماره1 می باشد اما در این مخزن دیگر به آب زاج اضافه نمی گردد . در این مخزن نیز ادامه عمل ته نشینی صورت می پذیرد . پس از اینکه اکثر مواد معلق در آب در این دو مخزن به صورت ته نشین در آمد ، سپس این آب به تانک خوراک «feed tank» وارد می گردد . این تانک اصولاً‌برای نگه دارای آب استفاده می شود تا همیشه مقداری آب به صورت ذخیره وجود داشته باشد . از این تانک ، آب توسط دو عدد پمپ (P-2009 ) به دو شاخه جداگانه پمپ می گردد. یک شاخه آب را به سمت ظرف نمک گیر (Desalter) و همچنین برای خنک کردن دستگاه ها و به خصوص پمپ ها می برد . شاخه دوم آب را جهت تصفیه بیشتر (سختی گیری ) به برج انفعالات شیمایی (Reaction tower) می برد . به این برج از طریق دو مخزن و دو پمپ که یکی از پمپ ها معمولاً‌ از سرویس خارج است ، آهک و سوداتزریق می گردد . تزریق این مواد باعث می شود که سختی های دائم و موقت موجود در آب ، تا حدود زیادی گرفته شود .مواد رسوبی از پایین این برج تخلیه می شود . ظرفیت این برج در حدود 27 متر مکعب در ساعت است .





واحد های تقطیر



Unit 100 (unit distillation oil crude )

همانطور که قبلاً گفته شد نفت خام در چهار مخزن 1024 ، 1025 ، 1026 و 1027 ذخیره می شود و مقداری آب و املاح و نمک آن ته نشین می شود که باید آنها را تخلیه نمود . هر لیتر آب در اثر حرارت کوره حجمش 1700 برابر می شود که باعث افزایش فشار و از بین رفتن سینی های برج تقطیر می شود ، این آب اگر همراه نفت وارد برج تقطیر انرژی لازم دارد که خارج شود ، آب رطوبت ایجاد می کند ، رطوبت وارد محصولات می شود و مشکل ایجاد می کند و همین طور فشار برج را بالا می برد . نمک ها که شامل کلریدها و ... می باشند ، یک سری رسوب کرده و روی مبدلها می نشینند و باعث اتلاف انرژی می شوند و یک سری با هیدرولیز شدن ، ترکیب اسیدی داده و باعث خوردگی می شوند . این نفت خام بوسیله پمپ های A,B,C,D 107 که دو تای آنها در حال کار و دو تای دیگر خارج از سرویس هستند از مخازن گرفته می شود . فشار تولیدی این پمپ ها در حدود Psi 400 می باشد . این پمپ ها نفت خام را از طریق یک لوله به سمت مبدلها می فرستند . نخستین مرحله پالایش ، تقطیر نفت خام در فشار نزدیک به جو می باشد . برای انجام این کار نفت خام را از مخازن پالایشگاه توسط تلمبه به کوره ای فرستاده و آنرا حرارت می دهیم تا گرم شود و به راحتی بتوان مواد سبک آنرا از مواد سنگین جدا نمود. اما قبل از آنکه نفت خام را وارد کوره نمائیم آنرا از یکسری مبدل حرارتی عبور می دهیم که قدری آنرا گرم کنیم . این مبدل های حرارتی مبدل هایی هستند که برای سرد نمودن فرآورده های برج تقطیر استفاده می شوند . بوسیله این مبدل ها که شباهت به لوله های دو جداره دارند ( مبدل Shell & Tube ) ما فرآورده ای را که قرار است خنک شود و به مخزن فرآورده ها هدایت شود سرد کرده و نفت خام را که قرار است حرارت دیده و گرم شود گرم می کنیم . بدین طریق ما در مقدار سوخت لازم جهت افزایش دمای نفت خام صرفه جویی می کنیم . دمای نفت خام در لحظه ورود به برج تقطیر در اتمسفر یک حدود 325 درجه فارنهایت می باشد. اگر نفت خامی که وارد کوره می شود دمایش پایین باشد قطعاً تلفات گرمایی فراوان خواهیم داشت ، در ضمن ممکن است به خطوط لوله آسیب برسد ، به همین دلیل سع می شود دمای نفت خام قبل از ورود به کوره به حدود 300 الی 400 درجه فارنهایت برسد. نفت خام پمپ شده به سمت مبدل 105 می رود ، اما قبل از ورود به این مبدل باید از طریق یک لوله فرع به آن آب تزریق شود به دلیل اینکه در نفت خام مقداری نمک وجود دارد و باید این نمک از نفت خام جدا شود. زیرا نمک باعث خوردگی لوله ها و یا رسوب و انسداد در برخی مجار می شود . آب بصورت دستی اضافه می شود مقدار مصرفی آب را آزمایشگاه مشخص می کند ولی چون معمولاً مقدار نمک موجود در نفت خام زیاد است حداکثر مقدار آب اضافه می شود . اگر بخواهیم رنجی را برای آب اضافه شده به نفت در نظر بگیریم ، بین 3تا 10 در صد حجمی می باشد که بستگی به API ( دانسیتیه نفت خامی است که به وسیله یک هیدرومتر تعیین می شود که این هیدرومتر درجه بندی اش توسط موسسه نفت آمریکا تعیین شده است ) دارد . هر قدر API کمتر باشد چون دانسیته نفت خام بیشتر است درنتیجه مقدار اب اضافه شده نیز بیشتر خواهدبود. نمک هایی که در نمک گیر جدا نمی شود را باید جدا کرد که برای این کار از سود سوزاور 14 تا 20 درصد استفاده می شود ، پس از آن نفت خام وارد مبدل 105 می شود و در قسمت لوله های آن جریان جریان پیدا می کند . از قسمت پوسته این مبدل گازوئیل محصول استریپر (102-V) که در قسمت بعد راجع به آن توضیح داده می شود می گذرد . دمای نفت خام در این مبدل از حدود 78 درجه فارنهایت به 100 درجه می رسد و سپس وارد مبدل 104 می شود و از قسمت لوله های آن می گذرد . از قسمت پوسته این مبدل نفت سفید محصول (103-V) عبور می کند . پس از عبور نفت خام از مبدل 104 این نفت خام از طریق لوله به سمت دو مبدل A,B 103 پیش می رود و قبل از ورود به آنها دو شاخه می شود . یک شاخه وارد مبدل A 103 و شاخه دیگر وارد مبدل B 103می شود و از قسمت لوله های این دو مبدل عبور می کند ، از قسمت پوسته این دو مبدل نفت سفید به عنوان reflax برج تقطیر عبور داده می شود



شرح عملیات واحد یونیفاینر

بنزین سنگین پس از عبور از یک مبدل حرارتی وارد کوره می شود . که قبل از ورود به کوره و عبور از مبدل حرارتی به آن هیدروژن به عنوان کمک کاتالیزور تزریق می شود و باعث می شود که واکنش های شکستن هیدرو کربونها برگشت نداشته باشد . در کوره حدود 635-610 درجه حرارت می بیند . که در همین حین ساختار مولکولی هیدرو کربونهای حاوی گوگرد و ازت شکسته و S و N، جدا می شوند . که با هیدروژن تزریق شده واکنش داده و H2S و NH3 تولید می کنند . اکسیژن نیز آب تولید می کند . ترکیب وارد فن های هوایی یا A.E( air exchanger) می شود . که قبل از ورود ترکیب به آن به ترکیب آب اضافه می کنیم . چون A.E لوله های باریکی وجود دارد که مواد موجود در ترکیب ( بنزین و آب ترش ) باعث انسداد این لوله ها می شود . به همین جهت به آن آب اضافه می کنیم . سپس بخار آب نیز اضافه می شود تا H2S و دیگر ناخالصی ها با بخار آب جدا شده و به صورت آب ترش یا سولواتر در می آید که در یک ظرف جدا کنندهافقی در قسمت moot آن آب و محلول آمونیاک جمع و در بالای آن بنزین همراه مقداری گازهای سبک و H2S نیز در بالا قرار می گیرند . فشار در این قسمت باید کنترل شود . چون اگر فشار کم شود ممکن است آب و بنزین با هم مخلوط شود . آب ترش و آمونیاک محلول از قسمت پایین بصورت تدریجی خارج می شود ( بطور دستی ) و بنزین از مخزن خارج شده و به سمت استریپر می رود . تا اگر احتمالاً‌مقداری ناخالص و گوگرد در آن باقی مانده است در استریپر گرفته شود . بنزینی که از استریپر خارج می شود charge plat نامیده می شود . ناخالصی های معلق جدا شده و سوزانده می شوند . ورود به استریپر آخرین مرحله واحد یونیفاینر می باشد .بنزین خارج شده از واحد یونیفاینر تقریباً‌عاری از ناخالصی های معلق جدا شده و سوزانده می شوند . ورود به استریپر آخرین مرحله واحد یونیفا ینر می باشد . بنزین خارج شده از واحد یونیفاینر تقریباً عاری از ناخالصی می باشد . که حاوی ppm ./2 گوگرد ، حداکثر مقدار T.S( totall sulfur) 74 گرم و ازت کمتر از ppm ./1 . ازت تولید نشادر می کند . در جاهای سرد بصورت جامد در می آید و لوله ها را مسدود می کند . کاتا لیست واحد پلاتفرمر که U .O.P آمریکا آنرا مشخص کرده و در این پالایشگاه استفاده می شود ، R62 میباشد ( پلاتین – رنیوم ) که از نظر کارایی بسیار خوب است ولی قبلاًاز کاتالیست R11 استفاده می شده است ، که در صد بالاتری از آن پلاتین بوده است . آب ترش که حاو ی SNH4 می باشد در این پالایشگاه به رودخانه ریخته می شود . ولی فبل از آن در واحد SRR گوگردزدایی می شود . در این واحد پلاتفرمر صورت می گیرد از پلاتین و رنیوم استفاده می شود . که این کاتالیزرور حاوی مقداری کلر می باشد ، 1-1/5 درصد .